Synthesis of the North 1 Unit of the Cephalostatin Family from Hecogenin Acetate ${ }^{1}$

Seongkon Kim, Scott C. Sutton, Chuangxing Guo, Thomas G. LaCour, and P. L. Fuchs*
Contribution from the Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received May 18, 1998

Abstract

Hecogenin acetate (1) was converted to North 1 azidoketone 5 involving several key transformations: (1) conversion of cyclic sulfate 33b to allylic alcohol 40 via Reich iodoso olefination; (2) E-ring annulation via intermolecular oxygen alkylation of highly functionalized secondary alcohol $\mathbf{4 0}$ using rhodium-catalyzed decomposition of an α-diazophosphonoacetate to provide α-alkoxyphosphonoacetate 52, with subsequent intramolecular Wadsworth-Emmons reaction to provide alkoxydihydrofuran 53; and (3) establishment of the C20 stereochemistry by chromium(II) reduction of tertiary bromide $\mathbf{8 6}$ to a $9: 1$ mixture of diastereomeric spiroketals $\mathbf{9 0} \alpha / \mathbf{9 0} \beta$, separated as silyl ethers $91 \alpha / 91 \beta$. Conversion of 91α to α-azidoketone $\mathbf{5}$ was uneventful.

Introduction

Cephalostatin $7(\mathbf{1 0})^{2}$ is a potent member of a family of 45 trisdecacyclic pyrazines, characterized by the groups of Pettit at Arizona State University and Fusetani at the University of Tokyo. ${ }^{3}$ These materials were isolated from the marine tube worm Cephalodiscus gilchristi, and more recently from the tunicate Ritterella tokioka. In particular, cephalostatin 7 (10) exhibits extreme potency with GI_{50} (growth inhibition concentration) of $0.1-1 \mathrm{nM}$ against a number of cancer cell lines (e.g., non-small cell lung HOP62, small cell lung DMS-273, renal RXF-393, brain U-251 and SF-295, and leukemia CCRF-CEM, HL-60, and RPM1-8226). ${ }^{2}$ In his seminal contribution detailing the structure of cephalostatin 1, Pettit hypothesized that the pyrazine core structure was assembled via dimerization and oxidation of steroidal α-aminoketones, a well-known reaction in the laboratory. ${ }^{4,5}$

[^0]In the context of the total synthesis of cephalostatin 7 (10), a biomimetic approach involved conversion of appropriately protected α-azidoketones $\mathbf{5}$ and $\mathbf{6}$ to α-aminoketones $\mathbf{7}$ and $\mathbf{8}$ followed by statistical combination to cephalostatins 12^{6} (9) and 7 (10) and ritterazine $K(\mathbf{1 1}) .{ }^{3 b}$ The specific synthetic strategy involved conversion of hecogenin acetate $\mathbf{1}$ to the pentacyclic dihydrofuran-aldehyde 2 which served as the common intermediate for preparation of both hemispheres (3 and 4) of the target pyrazines (Scheme 1). Recent SAR studies on cephalostatins and their analogues reveal that the North part is not only the most common unit in the cephalostatin family but is also strongly associated with the most potent antitumor activity. ${ }^{1 \mathrm{~g}, 7}$

Conversion of Hecogenin Acetate 1 to Aldehyde 2^{8}

Reduction of $\mathbf{1}$ with DIBAL at low temperature followed by acylation provides rockogenin diacetate 12 in 88% overall yield (Scheme 2). Isolation of $\mathbf{1 2}$ by recrystallization removed the hexane-soluble minor C12 α-acetate as well as tigogenin acetate (as $\mathbf{1}$ in Scheme 2 but $\mathrm{X}=\mathrm{H}, \mathrm{H}$) present in the starting material. ${ }^{9}$ By use of a procedure similar to Dauben's, ${ }^{10}$ diacetate $\mathbf{1 2}$ was converted to pseudorockogenin triacetate $\mathbf{1 3}$ in 79% yield by pyridinium hydrochloride catalyzed reaction with acetic anhydride, and thence into keto ester 14 by oxidation with chromium trioxide in acetic acid. Treatment of 14 in benzene with basic alumina effected β-elimination of the pentanoate side chain, thereby providing the desired enone $\mathbf{1 5}$ in $\mathbf{7 1 \%}$ yield from 13 on a large scale.

Allylic bromination of enone 15 with NBS^{11} stereoselectively yielded bromo enone 16 (Scheme 3). Three typical solvents for

[^1]
Scheme 1

free radical reactions, CCl_{4}, benzene, and cyclohexane, were tested on both small and large scales. All small scale reactions produced 16 in good yield ($75-85 \%$). However, the yield in benzene decreased significantly upon scale-up. In both CCl_{4} and cyclohexane, the reaction could be performed on a $10-20$ g scale and at higher concentrations $(0.02-0.03 \mathrm{M})$ without significant reduction in the yield of 16, thereby imparting a significant preparative advantage. Cyclohexane was the preferred solvent due to the cost and toxicity associated with CCl_{4}. The reaction also returned 15% of unreacted enone 15. Extended reaction time (2 h) or increased amounts of NBS (1.2 equiv) simply increased the proportion of unwanted dibromide 17.

Scheme 2

[^2]
Scheme 3

Because of separation difficulties, the crude mixture of 15/ 16/17 was epoxidized with alkaline hydrogen peroxide. ${ }^{12}$ After treatment with acetic anhydride to reacetylate some C3 alcohol that arose in the epoxidation step, a mixture of three products was isolated. The reaction afforded dienone $18(5-10 \%)$ that likely resulted from elimination of $\mathbf{1 6}$, epoxide 19 (10\%) from oxidation of enone 15, and the desired epoxyketone 20 (55$60 \%$) as a single stereoisomer. Products derived from dibromide 17 did not survive the reaction.

Although the D-ring oxidation state was secured, completion of the D-ring functionality proved extremely challenging. Elimination of bromoepoxide 20 to vinyl epoxide 21 was only

[^3]
Scheme 4

a) xs DMDO, $10 \mathrm{~d}, 25^{\circ} \mathrm{C}, 30 \%$; b) $\mathrm{OsO}_{4} / \mathrm{Pyr} ; \mathrm{NaHSO}_{3}, 25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 96 \%$
marginally successful even after substantial optimization, yielding a mixture of starting material $\mathbf{2 0}$, desired product 21, and dienylic alcohol 22 (resulting from further transformation of 21) (Scheme 4). Many attempts were made to suppress the second elimination. After much experimentation it was found that warming 20 in neat DBU with LiF (10 equiv) provided complete conversion to $\mathbf{2 1}$ without any evidence for formation of 22, although the low yield (50%) was troublesome.

This route was rapidly abandoned after finding that hydrolysis of vinyl epoxide 21 yielded an unacceptable 1:1 mixture of $1,4-$ diol 23 and target diol $\mathbf{2 4}$. The low yield of 21 in conjunction with the failure to effect regiospecific epoxide opening necessitated reformulation of the synthetic plan.

The revised plan involved establishment of the trans C16,17 oxygenation pattern prior to introduction of the C14,15 double bond. Reductive cleavage of bromoepoxide 20 with ultrasonicated zinc/copper couple ${ }^{13}$ proved highly effective at generating tertiary allylic alcohol $\mathbf{2 5}$, which was then protected as its TMS ether 26. ${ }^{14}$ While the wisdom of selecting a TMS protecting group was open to serious question, the issue was settled on a pragmatic basis. Since it proved impossible to even introduce

[^4]
Scheme 5

a) NaSePh ; b) H^{+}; c) 1. mCPBA; 2. $80^{\circ} \mathrm{C}$
a TES ether with the same silyl triflate technology, the TMS series was carried forward. This approach presumably succeeded because of the sterically confined nature of the silicon moiety. ${ }^{15}$ When olefin 26 was exposed to mCPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for extended periods, the starting material was recovered in over 90% yield. The olefin was also unreactive to mCPBA even at higher reaction temperatures. ${ }^{16}$ The low reactivity of the olefin 26 was again apparent when repeated infusions of an excess of the highly reactive oxidant dimethyldioxirane ${ }^{17}$ required 10 days to effect epoxidation of $\mathbf{2 6}$, affording 27 in a meager 30% yield (60% recovered 26). Fortunately, osmylation ${ }^{18}$ of olefin 26 stereospecifically generated diol $\mathbf{2 8}$ in nearly quantitative yield (Scheme 4). Attempts to use catalytic OsO_{4} were fruitless.
Cyclic sulfates ${ }^{19}$ have been known for a number of years and have been exploited as electrophilic epoxide equivalents. An excellent review by Lohray ${ }^{19 \mathrm{~d}}$ explains the features that distinguish cyclic sulfates from epoxides. Although they are less strained ($\sim 5 \mathrm{vs} \sim 27 \mathrm{kcal} / \mathrm{mol}$), five-membered cyclic sulfates contain a better leaving group. They occasionally show complementary regioselectivity to epoxides in nucleophilic ring-opening reactions and appear more reactive than the corresponding epoxides. Sharpless ${ }^{19 a}$ recently developed a facile conversion of 1,2-diols into cyclic sulfates that has resulted in ready availability of this class of compounds. In 1993, Shing ${ }^{19 c}$ described the reaction of cyclic sulfate 29 with selenide anion to generate trans-diaxial seleno alcohol $\mathbf{3 0}$ after hydrolysis of the sulfate salt (Scheme 5). Regiospecific oxidative elimination of selenoxide 31 led to allylic alcohol 32 in good yield.

Two variants of the above strategy were next attempted for synthesis of the key allylic alcohol 40. As anticipated, conversion of diol $\mathbf{2 8}$ to cyclic sulfate 33b through cyclic sulfite 33a (not shown) occurred smoothly with use of the Sharpless protocol (Scheme 6). ${ }^{19 \mathrm{a}}$ However, attempts to introduce the requisite olefin functionality with base-catalyzed elimination of

Scheme 6

a) $\mathrm{SOCl}_{2} / \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; b) $\mathrm{NaIO}_{4} / \mathrm{RuCl}_{3}$, aq. $\mathrm{CH}_{3} \mathrm{CN}, 0.5 \mathrm{~h}$; c) Base or NaSePh ; d) H^{+}; e) 7 eq $\mathrm{Bu}_{4} \mathrm{NI}, \mathrm{PhCH}_{3}, 110^{\circ} \mathrm{C}, 15 \mathrm{~h}$; f) 3 eq mCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$, 2.5 h ; g) cat. $\mathrm{H}_{2} \mathrm{SO}_{4}, 5$ eq $\mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 25^{\circ} \mathrm{C}$

Scheme 7

Scheme 8

sulfate 33b were completely unrewarding. The only product isolated from these reactions was epoxy alcohol 36, which may have arisen by intramolecular oxygen silylation of the ketone enolate (i.e. via 34). No attempts were made to detect the putative silyl enol ether intermediate since an acidic workup was necessary to hydrolyze sulfate monoester $\mathbf{3 5}$. Compound 36 also resulted from the action of NaSePh on sulfate 33b.

To avoid the base lability problem, we investigated the $\mathrm{S}_{\mathrm{N}} 2$ chemistry of substrate $\mathbf{3 3 b}$ with iodide ion to introduce the C14,15 olefin. Treatment of sulfate 33b with excess TBAI (tetrabutylammonium iodide) in toluene at reflux afforded iodo ammonium sulfate 37 in 90% yield (Scheme 6). Oxidation of 37 with mCPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided key intermediate allylic alcohol 40 after protonolysis of ammonium sulfate 39. This reaction is thought to proceed via syn-elimination of hypoiodous acid from iodoso intermediate 37, a reaction originally developed by Reich ${ }^{20}$ that is vastly under-exploited in complex synthesis 21,22 relative to the standard sulfoxide and selenoxide protocols. Also remarkable is that selective protonolytic cleavage of ammonium sulfate 39 to alcohol 40 can be effected without concomitant hydrolysis of the TMS ether moiety.

[^5]Having established the D-ring oxidation pattern, efforts were next focused upon synthesis of the E-ring present in the North 1 segment of the cephalostatins. Based on the retrosynthetic analysis (Scheme 7), α-alkoxy phosphonate ester 43 was required for E-ring annulation via an intramolecular Wad-sworth-Emmons reaction. Previously published model studies ${ }^{23}$ had indicated difficulty with the specificity of olefin osmylation as a means of establishing the C25,26 diol. Therefore, we envisaged construction of intermediate 42, bearing an appropriately configured acetonide in an effort to avoid osmylation of a remote C25,26 olefin. ${ }^{24}$ The appealing feature of this plan was the potential (ultimately not realized) for incorporation of the $25 S$ stereocenter via reuse of the previously excised side chain or adoption of an appropriate "chiral pool" starting material. Establishment of the requisite $\mathrm{C}-\mathrm{O}$ bond of compound $\mathbf{4 3}$ (see dashes, Scheme 7) was projected to occur via OH insertion into the rhodium carbenoid derived from an α-diazoketophosphonate with methodology developed by Moody. ${ }^{25}$

Since Moody has shown that unhindered primary alcohol 48 reacts slowly with α-diazoketophosphonate 44 to afford α-alkoxyketophosphonate $49,{ }^{25}$ we investigated the reaction of secondary neopentyl alcohol $\mathbf{4 0}$ with $\mathbf{4 4}$ before proceeding with construction of the optically active α-diazoketophosphonate required for synthesis of $\mathbf{4 3}$ (Scheme 8). Surprisingly, reaction of 44 with 40 in the presence of dirhodium tetraacetate was faster by a factor of 20 than reaction with the simple alcohol 48. Unfortunately, the product was not the desired α-alkoxyketophosphonate 45, but was rather phosphonate-ester 46, formed as a $\sim 1: 1$ mixture of diastereomers in 92% yield. While this product is formally in accord with a mechanism involving Wolff rearrangement ${ }^{26}$ of $\mathbf{4 4}$ to ketene $\mathbf{4 7}$ with trapping by $\mathbf{4 0}$, the fact that the slower-reacting Moody substrate 48 does not also form ketene adducts akin to $\mathbf{4 6}$ poses an interesting problem for future mechanistic study. ${ }^{27}$

From the failure of the model study above, it became apparent that assembling α-diazoketophosphonate 43 would be extremely difficult. To overcome this problem, the insertion reactions of α-diazophosphonate-ester 51 were explored (Scheme 9). It has been shown that the ester moiety is less prone to rearrange than the keto group in the rhodium(II) catalyzed diazophosphonate reaction with alcohols ${ }^{28}$ and we were pleased to see that reaction

[^6]
Scheme 9

of $\mathbf{5 1}$ with allylic alcohol $\mathbf{4 0}$ provided the desired insertion product $\mathbf{5 2}$ as a $1: 1$ mixture of diastereomers. Although this substrate represented the most highly functionalized alcohol which had been transformed to an α-alkoxyphosphonate at the time, subsequent studies from our group have revealed that the Moody protocol is a highly versatile strategy for the construction of complex targets. ${ }^{1 f, 29}$ Due to the difficulty associated with isolation and separation, ${ }^{30} 52$ was carried through the intramolecular Wadsworth-Emmons reaction without additional purification. Treatment of the crude $\mathbf{5 2}$ with sodium hydride in THF for 10 min at $0{ }^{\circ} \mathrm{C}$ smoothly afforded the five-membered intramolecular Wadsworth-Emmons product 53 in 75% yield for the two-step procedure. The facile transformation of $\mathbf{4 0}$ to alkoxydihydrofuran-ester $\mathbf{5 3}$ was surprising, since the assembly of the densely functionalized E-ring was initially judged to be one of the most difficult tasks of the synthesis.

Completion of the synthesis of key intermediate 2 was uneventful (Scheme 10). Lithium borohydride reduction ${ }^{31}$ of 53 provided a mixture of allylic alcohols $\mathbf{5 4 a} / \mathbf{5 4 b}$ which only differ in that 54a suffered acetate cleavage at C3 during borohydride treatment. This mixture was selectively reoxidized to a corresponding mixture of aldehydes $\mathbf{5 5 / 2}$ with MnO_{2}. A final acetic anhydride treatment was employed on the crude aldehydes $\mathbf{5 5 / 2}$ to convert the minor amount of $\mathbf{5 5}$ to the key pentacyclic aldehyde 2. The overall yield for these three steps was 61%, resulting in an overall $\mathbf{9 \%}$ yield of $\mathbf{2}$. Subsquent studies on larger scales have resulted in $7-8 \%$ yields for the 20 -step sequence from hecogenin acetate $\mathbf{1}$ to aldehyde 2.

Scheme 10

53

Synthesis of the North 1 Spiroketal ${ }^{32}$

Various procedures examined for addition of methallylstannane to aldehyde 2 (Scheme 11) are summarized in Table 1. The more polar major adduct $\mathbf{3}$ was hydrolyzed to the C3,12,17,23 tetraol 57 and the C23 stereochemistry was secured by X-ray crystallography. ${ }^{33}$ The best methallyl stannane reaction involved $5 \mathrm{M} \mathrm{LiClO}_{4}$ in ether, ${ }^{34}$ affording a 1.3:1 mixture of 3

[^7]
Scheme 11

Table 1

entry	reagents	conditions	yield (ratio 3:4)
1	methallyl stannane	$\begin{aligned} & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \\ & \\ & -78^{\circ} \mathrm{C}, 1 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 80 \% \\ & \quad(1.6: 1.0)^{a} \end{aligned}$
2	methallyl stannane	$\begin{aligned} & 5.0 \mathrm{M} \mathrm{LiClO}_{4},{ }^{34} \\ & \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h} \end{aligned}$	$\begin{aligned} & >95 \% \\ & (1.3: 1.0) \end{aligned}$
3	$\begin{aligned} & \text { methallyl- } \\ & (-)-\mathrm{IPc}_{2} \mathrm{~B}^{35} \end{aligned}$	THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$	$\begin{aligned} & 69 \% \\ & (1.7: 1.0)^{b} \end{aligned}$
4	methallyl stannane	(-)-Binaphthol, MS $\mathrm{Ti}(\mathrm{O}-\mathrm{iPr})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{NR}^{c, 36}$
5	methallyl stannane	(+)-Binaphthol, MS $\mathrm{Ti}(\mathrm{O}-\mathrm{iPr})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	NR^{c}

${ }^{a}$ In large scale reactions the yields dropped below 50% due to the acid lability of 2. ${ }^{b}$ The 3-Ac was also cleaved during workup. ${ }^{c}$ Even at $25^{\circ} \mathrm{C}$, no reaction was observed after 2 d .
and $\mathbf{4}$ in nearly quantitative yield. Asymmetric methallylation technology was also explored with the hope that double diastereoselection would be possible. Use of Brown's chiral methallyl boron reagent ${ }^{35}$ gave a slightly better ratio of diastereomeric homoallyl alcohols (1.7:1), but the chemical yields were disappointingly low (65-75\%) due in part to concomitant cleavage of the C3 acetate. Unfortunately, no reaction was observed under Keck's conditions ${ }^{36}$ (Table 1, entries 4, 5). Since the unnatural diastereomer 4 served as progenitor of the South portion of cephalostatin 7 (10) via deoxygenation, ${ }^{37}$ the readily separable mixture of alcohols 3 and 4 was perfectly acceptable at this juncture. Further stocks of "North" alcohol 3 could be secured via Mitsunobu inversion. ${ }^{38}$ Reaction of $\mathbf{4}$ with formic acid and triphenylphosphine in the presence of diethyl azodicarboxylate smoothly afforded formate 56 in 76% yield. Heating this material in methanol at reflux provided natural alcohol $\mathbf{3}$ in 87% yield.

[^8]
Scheme 12

58 Z=H; R=TBDPS, 14,15-dihydro
$59 \mathrm{~S}=\mathrm{H}$; R=TBDPS, 14,15-dihydro
3 Z=OTMS; R=H, Δ^{14}
61 Z=OTMS; R=TBDPS, Δ^{14}
$605 \mathrm{Z}=\mathrm{OTMS} ; \mathrm{R}=\mathrm{H}, \Delta^{14}$
$62 S$ Z=OTMS; R=TBDPS, Δ^{14}

59R $Z=H ; R=T B D P S, 14,15$-dihydro
60R $Z=O T M S$; $R=H, \Delta^{14}$
62R Z=OTMS; R=TBDPS, Δ^{14}

Table 2. Asymmetric Dihydroxylation of Terminal Alkenes

entry	substrate	conditions	yield (\%)	ratio	C25 nat/epi
1	58	$(S, S)-63,-100{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}^{a, 23}$	98\%	59S/59R	8:1
2	3	$(S, S)-63,-95{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$	95\%	60S/60R	2:1
3	3	Sharpless AD-mix- $\alpha, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$\sim 25 \%$ conv	60S/60R	2:1
4	3	Sharpless AD-mix- $\beta, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$\sim 25 \%$ conv	60S/60R	1:4
5	61	Sharpless AD-mix- $\alpha, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$	~30\% conv	62S/62R	1:2
6	61	(S,S)-63, -95 ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$	95\%	62S/62R	4:1

Scheme 13

64 α : X=OTBDPS; R=TMS; $M e=\alpha$
64 β : $X=$ OTBDPS; $R=T M S$; $M e=\beta$
67 α : X=OH; R=H; $\mathrm{Me}=\alpha ; 3-\mathrm{OH}$
67 3 : $\mathrm{X}=\mathrm{OH} ; \mathrm{R}=\mathrm{H} ; \mathrm{Me}=\beta ; 3-\mathrm{OH}$

62S: $\mathrm{X}=$ OTBDPS; $\mathrm{R}=\mathrm{TMS}$

66S: $\mathrm{X}=\mathrm{OH} ; \mathrm{R}=\mathrm{H} ; 3-\mathrm{OH}$

Having unambiguously determined the C23 stereochemistry of the homoallylic alcohol 57, attention was turned toward establishment of the C25,26 diol functionality. With the acidsensitive, electron-rich dihydrofuran moiety making most electrophilic methods (epoxidation, halohydroxylation) ${ }^{39}$ doubtful, it seemed prudent to employ osmylation.

An osmylation model study ${ }^{23 a}$ (Scheme 12 and Table 2, entry 1) with 17-deoxy-14,15-dihydro olefin $\mathbf{5 8}$ required symchiral Corey ligand 63^{40} to provide reasonable diastereoselection (59S/ $\mathbf{5 9 R} \sim 8: 1$). Consequently, we first examined reaction of alcohol 3 using these conditions. While neither this reaction nor the Sharpless AD procedure ${ }^{41}$ was acceptable for alcohol 3 (Table 2 , entries $2-4$), ligand $\mathbf{6 3}$ provided a usable $4: 1$ ratio of inseparable diols $\mathbf{6 2 S} / \mathbf{6 2 R}$ when the reaction was conducted on tert-butyldiphenylsilyl ether $\mathbf{6 1}$ (98% from $\mathbf{3}$ by the method of Hardinger, ${ }^{42}$ Table 2, entry 6).

[^9]With the inseparable $4: 1$ mixture of diols $\mathbf{6 2 S} / \mathbf{6 2 R}$ as well as the corresponding mixture of tetraols $\mathbf{6 6 S} / \mathbf{6 6 R}$ (prepared via desilylation of the C17,23 diol mixture $\mathbf{6 2 S} / \mathbf{6 2 R}$) in hand, the stage was set to study acid-catalyzed spiroketal formation. A serious concern was the possibility of ionization of the C17 oxygen substituent via a Ferrier-type process ${ }^{43}$ that could result in unwanted side products via intermediate 65 (Scheme 13).

In a model study ${ }^{23 a}$ lacking the $\Delta^{14,15}$ unsaturation and the C17 oxygen moiety, cyclization of diol 59S (Scheme 12) under acidic conditions was unproductive. However, model triol 68S underwent cyclization at $25^{\circ} \mathrm{C}$ to provide an $8: 1$ mixture of spiroketals $\mathbf{6 9} \beta$ and $\mathbf{7 0} \beta$ both bearing the unnatural β-methyl configuration at C20 (Scheme 14). Brief heating of the reaction mixture at $80^{\circ} \mathrm{C}$ provided $\mathbf{6 9} \beta$ in near quantitative yield. It was hoped that in the real system, the tertiary C17 TMS ether might prevent protonation from the α-face of the molecule, thereby giving the natural α-methyl configuration at C20 (64α or 67α).

Initial acid-mediated cyclization studies were conducted on the inseparable mixture of TBDPS protected diols $\mathbf{6 2 S} / \mathbf{6 2 R}$. When mild acids (pyridinium p-toluenesulfonate $=$ PPTs or lutidinium p-toluenesulfonate) were employed, there was no reaction as expected due to the combined steric and inductive effects of the C17 and C26 oxygens. When the PPTs reaction was heated at reflux at $80^{\circ} \mathrm{C}$, or when stronger acids (Nafion-

[^10]
Scheme 14

$\mathrm{H}, \mathrm{TfOH}, \mathrm{HClO}_{4}, \mathrm{BF}_{3} \cdot 2 \mathrm{HOAc}$) were employed, complex mixtures resulted. The proton NMR spectra of these mixtures contained signals for the desired spiroketal $\mathbf{6 4} \alpha$, albeit in very low yield $(<10 \%)$. Due to the complexity of the product mixture as well as the poor yield of the desired product, this approach was not synthetically viable. Cyclization of a $4: 1$ diastereomeric mixture of tetraols $\mathbf{6 6 S} / \mathbf{6 6 R}$ prepared via desilylation of the $4: 1$ $\mathbf{6 2 S} / 62 R$ mixture was also unfruitful. Further acid-catalyzed cyclizations were not attempted.

Scheme 15

While reaction of the $4: 1 \mathbf{6 2 S} / \mathbf{6 2 R}$ diol mixture with a variety of acids was unrewarding, NBS-mediated spirocyclization ${ }^{23 a}$ cleanly afforded the C20 brominated 5/5 spiroketal 71S (77\%), chromatographically separable from its diastereomer 71R (15\%) which resulted from cyclization of the minor diol $\mathbf{6 2 R}$ (Scheme 15). The structure of $71 S$ was confirmed by X-ray of alcohol 72^{33} obtained by methanolysis of the C3 acetate.

Attempts to incorporate iodide at C20 by using either NIS ${ }^{44}$ or the highly reactive IDCP (Iodonium di-Collidine Perchlorate) ${ }^{45}$ were not successful (Scheme 16). Presumably these reactions were unsuccessful due to the bulkiness of the reagents which retarded reaction at the enol ether moiety, thereby leading to the unwanted ketone $\mathbf{7 3}$ via oxidative fragmentation ${ }^{46}$ of the C25,26 diol (Scheme 16).

Stereoselective Reduction of Hindered Bromides

Stereoselective reductive cleavage of the tertiary C20 bromide $71 S$ provided the most severe challenge of the entire synthesis. To obtain the natural α-methyl configuration at C20, we wished to debrominate $71 S$ to $\mathbf{6 4} \alpha$ as shown in Scheme 17. To this end, triphenyltin hydride reduction of bromide $71 S$ was initially

[^11]Scheme 16

attempted. Unfortunately, only complex mixtures were isolated without any sign of the debrominated products $\mathbf{6 4} \alpha, \beta$. This was surprising since tin hydride cleavage of model compound 75 to spiroketals 76 α, β was an excellent reaction. ${ }^{23 a}$

Scheme 17

A number of other methods were investigated, including photochemical protocols ${ }^{47-51}$ (Scheme 18, Table 3). It is known that alkyl halides can be reduced by irradiation in an appropriate solvent with or without reducing additives. Electron transfer within the initial radical pair cage is postulated to afford carbenium ion intermediates responsible for alkene and nucleophilically substituted sideproducts. Irradiation of $\mathbf{7 1 S}$ at 254 nm in alcoholic solvent provided olefin 77 as the only product (65\%), without a trace of the desired 64. Another attempt in the presence of tin hydride ${ }^{52}$ at 350 nm gave the same result.

Reductions via cationic intermediates under various conditions such as $\mathrm{NaCNBH}_{3} / \mathrm{ZnCl}_{2}{ }^{53}$ or $\mathrm{SnCl}_{2}{ }^{53}$ and $\mathrm{Et}_{3} \mathrm{SiH} /$ Lewis acids ${ }^{54}$ were next attempted. Unfortunately, 71S was inert to these conditions. Reduction under basic conditions was also explored. However, these methods (including Birch reduction, ${ }^{55}$ transmetalation by t - $\mathrm{BuLi}, \mathrm{Zn} / \mathrm{Cu}$ alloy, and lithium biphenylide) showed either no reaction or decomposition.
Since the bulky α-face silyl ether at C17 might have been responsible for retarding the reduction of the α-face C20 bromide, deprotection of the TMS group was explored (Scheme 19). Surprisingly, the C23 TBDPS group was also cleaved under mild conditions (TBAF/ $0{ }^{\circ} \mathrm{C}$). Careful examination via TLC showed that deprotection of both silicon groups occurred essentially simultaneously. The resultant bromo-triol 78 was too unstable for further manipulation. When a large excess of TBAF

[^12]
Scheme 18

Table 3. Initial Debromination Experiments with Bromide 71S

entry	reagents	conditions	results
1	$\mathrm{Bu}_{3} \mathrm{SnH}$	AIBN, $80{ }^{\circ} \mathrm{C}$	complex
2	$\mathrm{Bu}_{3} \mathrm{SnH}$	Rayonet (350 nm), RT, 1 h	77 65\%
3	$\mathrm{Ph}_{3} \mathrm{SnH}$	AIBN, $50{ }^{\circ} \mathrm{C}$	71 S recov
4	$\mathrm{Ph}_{3} \mathrm{SnH}$	AIBN, $80{ }^{\circ} \mathrm{C}$	complex
5	$\mathrm{Bu}_{2} \mathrm{SnH}_{2}{ }^{48}$	AIBN, $80{ }^{\circ} \mathrm{C}$	complex
6	NME_{2}^{49}	AIBN, $80{ }^{\circ} \mathrm{C}$	complex
7		Rayonet (350 nm), RT, 1 h	77 60\%
8	$\mathrm{PhSiH}_{3}{ }^{50}$	AIBN, $80{ }^{\circ} \mathrm{C}$	71S recov
9	$\mathrm{H}_{3} \mathrm{PO}_{2} / \mathrm{Et}_{3} \mathrm{~N}^{51}$	AIBN, $110^{\circ} \mathrm{C}$	complex

was used in the presence of acid, elimination of bromide 71S occurred to give olefinic triol 79 in good yield.

Although hydrogenation of olefin 79 might be expected to produce $\mathbf{6 4} \beta$ bearing the unnatural β-methyl configuration at C 20 , several protocols were attempted with 79 , including $\mathrm{H}_{2} /$

Scheme 19

$\mathrm{Pd} / 60 \mathrm{psi},{ }^{56}$ diimide, ${ }^{57}$ and $\left[\operatorname{Ir}(\operatorname{cod})\left(\mathrm{Pcy}_{3}\right) \mathrm{Pyy}^{2}\right] \mathrm{PF}_{6} / \mathrm{H}_{2} .{ }^{58}$ Unfortunately, no 64 was observed.

In 1966, Barton reported that bromohydrin 80 could be reduced to alcohol $\mathbf{8 1}$ with retention of stereochemistry by using chromium acetate in the presence of a hydrogen atom transfer agent (Scheme 20). ${ }^{59}$ In another example of chromium(II) de-

Scheme 20

80
81

[^13]Scheme 21

Table 4. Reduction of 71S in DMSO

entry	$71 S+$ reagents and H donor ${ }^{a}$	temp $\left({ }^{\circ} \mathrm{C}\right)$	time	results
1	20 equiv $\mathrm{Cr}(\mathrm{OAc})_{2}$; 80 equiv $n-\mathrm{PrSH}$	50	48 h	64 β (30\%)
2	4 equiv $\mathrm{Cr}(\mathrm{OAc})_{2}$; 40 equiv ED^{b}	25	5 min	77 (99\%)
3	$\begin{aligned} & 4 \text { equiv } \mathrm{CrCl}_{2} \text {; } \\ & \quad 10 \text { equiv } n-\mathrm{PrSH} \end{aligned}$	25	24 h	no reaction
4	$\begin{aligned} & 4 \text { equiv } \mathrm{CrCl}_{2} \text {; } \\ & 100 \text { equiv } n-\mathrm{PrSH} \end{aligned}$	25	5 h	$\begin{gathered} 64[\alpha / \beta=1: 7] \\ (80 \%) \end{gathered}$
5	4 equiv CrCl_{2}; 10 equiv $\mathrm{Ph}_{3} \mathrm{SnH}$	25	30 min	$\begin{gathered} 64[\alpha / \beta=1: 2] \\ (30 \%) \end{gathered}$
6	$\begin{aligned} & 5 \text { equiv } \mathrm{CrCl}_{2} \text {; } \\ & 100 \text { equiv } t-\mathrm{BuSH} \end{aligned}$	25	6 h	$\begin{aligned} & 77(50 \%)+\mathbf{6 4} \beta \\ & \quad(5 \%) \end{aligned}$

${ }^{a}$ DMSO was degassed by Ar which was pretreated with basic pyrogallol solution. ${ }^{b} \mathrm{ED}=$ ethylenediamine.
halogenation, inversion was observed. ${ }^{60}$ It is generally held that the stereochemistry of such reductions is strongly influenced by thermodynamics at the stage of the radical intermediate. ${ }^{61}$ This reaction signaled the beginning of the explosive growth of radical technology pioneered by the Barton school. Interestingly, with the advent of the now standard tin hydride protocols, chromium(II) mediated reductions have seen few applications in recent years. Of particular interest with reference to dehalogenation of $71 S$ was the prospect of generating the tris- β-alkoxy radical at lower reaction temperatures than via the tin hydride procedures.

Bromide 71S was treated with excess $\mathrm{Cr}(\mathrm{OAc})_{2}$ in the presence of n-propyl mercaptan (Scheme 21, Table 5, entry 1). While the reaction was unacceptably slow, it was extremely rewarding to isolate a C20 reduction product for the first time (30% yield) in addition to recovered starting material (60%). While the C20 stereochemistry (64α or $\mathbf{6 4} \beta$) was initially indeterminate, nOe studies indicated a proximal relationship between the C23 methine and the C20 methine, which suggested

Scheme 22

a) TBS-Cl/imidazole/DMF (95\%); b) $\mathrm{KHCO}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(95 \%)$;
c) $\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ (97\%); d) $\mathrm{H}_{2} \mathrm{SiF}_{6} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ (93\%);
e) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; f) NBS/aq DME (90% for 3 steps).

Scheme 23

$87 X=\beta-O A c, R=H, R^{\prime}=H$
$86 X=O, R=H, R^{\prime}=H$
$88 \mathrm{X}=\mathrm{O}, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{TBDMS}$
86R $X=O, R=H, R^{\prime}=H(25 R)$

$\alpha-\mathrm{Me}$ (C20 natural)
$89 \alpha X=\beta-O A C, R=H, R^{\prime}=H \quad \sim^{a}$
$92 \alpha X=\beta-O A c, R=H, R^{\prime}=$ TBDMS
$90 \alpha X=O, R=H, R^{\prime}=H \quad \sim^{a}$
$91 \alpha X=O, R=H, R^{\prime}=$ TBDMS
$93 \alpha X=O, R=H, R^{\prime}=H(25 R)$

$89 \beta X=\beta-O A c, R=H, R^{\prime}=H \quad \sim^{a}$
$92 \beta X=\beta$-OAc, $R=H, R^{\prime}=$ TBDMS
$90 \beta X=0, R=H, R^{\prime}=H \quad \sim^{a}$
$91 \beta X=O, R=H, R^{\prime}=T B D M S$
$93 \beta X=O, R=H, R^{\prime}=H(25 R)$
(a) TBDMSCI/imidazole/DMF, $25^{\circ} \mathrm{C}$, 6 h (quantitative).

Table 5. Dependence of Stereoselectivity on Substrate Structure and Conditions

entry	SM	R	R^{\prime}	X	no. of equiv of $n-\mathrm{PrSH}$	solvent, temp	time (h)	products [ratio] ${ }^{a}$ (yield)
1	$71 S$	TMS	H	β-OAc	100	DMSO, $25^{\circ} \mathrm{C}$	6	$64[\alpha / \beta=1: 7](80 \%)$
2	87	H	H	β-OAc	100	DMSO, $25^{\circ} \mathrm{C}$	0.5	$89[\alpha / \beta=3.5: 1](90 \%)$
3	86	H	H	O	100	DMSO, $25^{\circ} \mathrm{C}$	0.5	$\mathbf{9 0}[\alpha / \beta=3.6: 1](87 \%)$
4	86	H	H	O	200	DMF, $-15^{\circ} \mathrm{C}$	2.5	
5	86	H	H	O	200	DMF, $-40^{\circ} \mathrm{C}$	6	
6	88	H	TBS	O	200	DMSO, $25^{\circ} \mathrm{C}$	12	$91 \alpha(60 \%)+91 \beta(15 \%)(+10 \% 88)$
7	86R	H	H	O	200	DMF, $-15^{\circ} \mathrm{C}$	2	NR
8	86R	H	H	O	200	DMF, $25{ }^{\circ} \mathrm{C}$	6	$93[\alpha / \beta=5.5: 1](90 \%)$
9	85	TMS	TBS	O	100	DMSO, $25^{\circ} \mathrm{C}$	12	NR

${ }^{a}$ Ratio for inseparable diastereomers estimated by NMR.
that the product had the unnatural β-methyl configuration 64β. This assignment was ultimately secured by single-crystal X-ray analysis of bis-desilylated triol diacetate 82. ${ }^{33}$

Although β-face quenching with thiol would give $\mathbf{6 4 \alpha} \alpha$ bearing the more stable natural α-methyl configuration at C 20 , the α-configured radical from bromide 71S may have been quenched by excess thiol to give $\mathbf{6 4} \beta$ before equilibration to the more stable β-configured radical precursor of 64α.

In an effort to mediate the selectivity of the chromium(II) system, a number of experiments were undertaken. The reactivity of $\mathrm{Cr}(\mathrm{OAc})_{2}$ was greatly improved by adding ethylenediamine, ${ }^{62}$ but the product was olefin 77 (Table 4, entry 2). Attempts involving CrCl_{2} were initially disappointing as no reaction occurred (entry 3). Finally, we noted that reduction proceeded smoothly (80%) provided that a large excess of thiol was employed (entry 4). These observations indicated that the thiol might act not only as a hydrogen atom donor but also as a ligand, thereby enhancing the reducing power of chromium(II). The NMR spectra of the products revealed a disappointing $1: 7$ ratio of the long sought $\mathbf{6 4} \alpha$ in addition to its inseparable diastereomer $\mathbf{6 4} \beta$. Repeating the reaction with more sterically demanding H -atom donors was unsatisfactory (entries 5,6).

Faced with an apparently impossible separation of the C20 diastereomers, it seemed prudent to delay bromide reduction until after introduction of the ketone at C3. Accordingly, the C26 hydroxyl of $\mathbf{7 1 S}$ was converted to C26 TBDMS ether 83, followed by cleavage of the C 3 acetate which afforded alcohol 84 (Scheme 22). Oxidation to ketone $\mathbf{8 5}$ followed by selective bis-desilylation with $\mathrm{H}_{2} \mathrm{SiF}_{6}{ }^{63}$ provided diol $\mathbf{8 6}$ in 83% overall yield for the four-step procedure. Further reduction substrates were generated by mono-desilylation of $71 S$ to give 87 (17$\mathrm{OH}, 94 \%$ from $71 S$ via $\mathrm{H}_{2} \mathrm{SiF}_{6}{ }^{63}$ cleavage, see Scheme 23), reprotection of the $\mathrm{C} 26-\mathrm{OH}$ of $\mathbf{8 6}$ to afford $\mathbf{8 8}$, and conversion of $\mathbf{7 1 R}$ to $\mathbf{8 6 R}$. In this case, it was found that prior protection
of the C26-OH was unnecessary, as NBS-mediated oxidation ${ }^{64}$ of the $3,17,26$-triol derived from 71R proceeded smoothly at C 3 to give diol $\mathbf{8 6 R}$ in high yield.

The breakthrough to achieve the correct C20 stereochemistry involved conducting the chromium-mediated reductive cleavage on the C17 alcohol (Scheme 23 and Table 6). For example, while reduction of $71 S$ (17-OTMS) generated a $1: 7$ mixture of $\mathbf{6 4} \alpha$ and $\mathbf{6 4} \beta$ (Table 4 , entry $4=$ Table 5 , entry 1), reaction of $\mathbf{8 7}$ afforded a 3.5:1 ratio of $\mathbf{8 9} \alpha$ to $\mathbf{8 9} \beta$ in 90% yield (Table 5, entry 2). This structural feature carried over to the C3-keto series, with essentially identical results being obtained for dehalogenation of ketone 86 (17-OH) to 90α and 90β (entry 3). Furthermore, a substantially improved ratio of $9: 1$ for the C20 diastereomers $90 \alpha, \beta$ was attained simply by carrying out the reduction in DMF at $-15^{\circ} \mathrm{C}$ (entry 4), although even lower temperature gave sluggish reaction with diminished selectivity (entry 5). While the ketodiols $90 \alpha / 90 \beta$ were not readily separable, protection of the C26 neopentyl alcohols as TBS ethers enabled surprisingly facile isolation of the pure keto-alcohols 91α and 91β (Scheme 23, $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{TBDMS}, \mathrm{X}=\mathrm{O}$) in 76% and 8% overall yields from 86, respectively. The C3 acetates $\mathbf{8 9} \alpha / \mathbf{8 9} \beta$ could be likewise separated as their 26-OTBS ethers $\mathbf{9 2} \alpha$ and $\mathbf{9 2} \beta$ (70% and 20%, respectively, from $\mathbf{8 7}$).

Substantial effects on reduction rate were apparent for the silyloxy groups at both C17 and C26. Reaction of $\mathbf{8 7}$ (17-OH) proceeded far more quickly than had that of 71S (17-OTMS). Reduction of $86(17 \alpha, 26 \alpha$ diol) was much faster than that of $\mathbf{8 8}(17 \alpha-\mathrm{OH}, 26 \alpha-\mathrm{OTBDMS})$, although no change in selectivity was evident (both gave a $\sim 3.5: 1 \mathrm{C} 20 \alpha / \beta$ ratio, entries 2 and 5). Interestingly, $86 \boldsymbol{R}$ ($17 \alpha, 26 \beta$ diol, the $25 R$ epimer of $\mathbf{8 6}$) also exhibited a slower rate than did 86 (entries 6 and 7), raising

[^14]
Scheme 24

North segment of cephalostatins 7, $12(9,10)$
$94 \alpha \mathrm{Me}=\alpha$
$94 \beta \mathrm{Me}=\beta$

Table 6. Proton NMR Resonances in Pyridine- d_{5}

compd	C-19 (s)	C-18 (s)	C-21 (d)	C-27 (s)
CSTAT 7 $(\mathbf{1 0})^{2}$	0.75	1.31	1.33	1.61
CSTAT 12 $(\mathbf{9})^{6}$	0.73	1.33	1.35	1.63
94α	0.78	1.31	1.34	1.63
94β	0.80	$\mathbf{1 . 9 3}$	$\mathbf{1 . 6 5}$	1.63

the possibility that the $26 \alpha-\mathrm{OH}$ facilitates the reaction by coordinating with the reagents. Finally, the combination of silyloxy groups at both $\mathrm{C} 17 \alpha$ and C26 α appeared to completely block access to C20 since reduction of $\mathbf{8 5}$ is impossibly slow (entry 8). While a more complete understanding of the mechanistic implications of these observations awaits further refinement, ${ }^{65}$ it is apparent that a free alcohol moiety at C17 appears to be an absolute structural requirement for production of the desired stereochemistry.

While the stereochemical assignment of all of the hexacyclic compounds ultimately rested on the X-ray of $\mathbf{8 2}$ (desilylated 64β), the four methyl resonances in the proton NMR (pyridined_{5}) of pentaols 94α and 94β (from deprotection of 92α and $\mathbf{9 2} \beta$, respectively) were particularly informative when compared to the published data from natural products cephalostatin $7(\mathbf{1 0})^{2}$ and the "North dimer" cephalostatin 12 (9, Scheme 24). As can be seen in Table 6, the methyl resonances of $\mathbf{9 4} \alpha$, assigned the natural configuration at C20, had essentially identical chemical shifts to the North segments of the two reference cephalostatins. Furthermore, compound 91α was used to complete the synthesis of both cephalostatins $7(\mathbf{1 0})$ and $12^{6}(\mathbf{9})$, thus removing any ambiguity about the structure of the spiroketal array. ${ }^{1}$

Completion of the synthesis of α-azidoketone 5 simply involved treatment of ketone 91α with phenyltrimethylammonium perbromide (PTAB) in THF for short reaction times to afford α-bromoketone 95 ($80 \%, 94 \%$ based on recovered 91α) which was subjected to reaction with tetramethylguanidinium azide (TMGA) in nitromethane ${ }^{66}$ (Scheme 25). This protocol

Scheme 25

- a

96
a) PTAB, THF, $0^{\circ} \mathrm{C}$; b) TMGA, $\mathrm{CH}_{3} \mathrm{NO}_{2}, 25^{\circ} \mathrm{C}$
smoothly generated α-azidoketone 5 in $75-85 \%$ yield (nearly quantitative on small scales). This can be contrasted with other azide reactions such as sodium azide in DMF that produced 5

[^15]along with up to 25% of α-aminoenone 96 resulting from competitive enolization and fragmentation ${ }^{67}$ of azidoketone 5.

Experimental Section

General Methods. All reactions were performed under a positive pressure of argon at $25^{\circ} \mathrm{C}$ with magnetic stirring unless otherwise noted.Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium benzophenone ketyl; benzene, toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dimethyl sulfoxide (DMSO), and dimethylformamide (DMF) were distilled from calcium hydride. Acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, chloroform $\left(\mathrm{CHCl}_{3}\right)$, and methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ were spectra-grade. Ethyl acetate (EA) was reagent grade. Hexane (Hex) was distilled (95\% hexanes). Thin-layer chromatography (TLC) was performed on silica gel $60 \mathrm{~F}-254$ plates (EM reagents, 0.25 mm). Preparative column chromatography (sgc) was performed with $230-400$ mesh silica gel. NMR spectra were determined in chloroform- $d_{1}\left(\mathrm{CDCl}_{3}\right)$ at 300 (proton) and 75 MHz (carbon) unless otherwise noted [benzene- $d_{6}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$, pyridine- $d_{5}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$, methanol- $d_{4}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$, or deuterium oxide $\left(\mathrm{D}_{2} \mathrm{O}\right)$ were alternate solvents] and are reported in parts per million (ppm, δ) referenced to internal $\mathrm{CHCl}_{3}(7.26$ and 77.00 ppm$), \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}(7.15 \mathrm{ppm}), \mathrm{CD}_{2} \mathrm{HOD}$ (3.30 and 49.00 ppm), $\mathrm{C}_{5} \mathrm{D}_{4} \mathrm{HN}$ (8.71 and 149.5 ppm), or HOD (4.65 ppm). Peak multiplicities are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), b (broad), ap (apparent), and ABq (AB quartet). In APT spectral lists, chemical shifts of carbons with one or three attached hydrogens are marked with an asterisk; the unmarked chemical shifts represent carbons with zero or two attached hydrogen atoms. Mass spectra were run by the Purdue Campus-wide Mass Spectrometry Facility; peaks are reported as m / z. Microanalyses were performed by the Purdue Chemistry Department Microanalytical Laboratory.

Bromo Epoxide 20. A mixture of enone 15 ($15 \mathrm{~g}, 36 \mathrm{mmol}$, from 1 via modification of the method of Dauben and Micovic ${ }^{8,10,68}$), NBS $(7.4 \mathrm{~g}, 41 \mathrm{mmol})$, and a catalytic amount of benzoyl peroxide $(0.40 \mathrm{~g}$, $1.8 \mathrm{mmol})$ in cyclohexane $(1.8 \mathrm{~L})$ was heated at reflux for 3 h and then cooled. Succinimide was removed by filtration and the solvent evaporated under reduced pressure. The resulting oil was composed (by NMR) of unreacted starting enone 15 ($\sim 15 \%$), γ-bromo enone 16 ($\sim 75 \%$), and dibromide $17(<5 \%)$. This ternary mixture was dissolved in 400 mL of methanol, cooled to $0^{\circ} \mathrm{C}$, and treated with 4 N NaOH $(0.6 \mathrm{~mL})$ and then immediately with a $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution $(0.65 \mathrm{~mL})$. The mixture was then stirred at $0^{\circ} \mathrm{C}$ for 24 h . The reaction was acidified with $5 \% \mathrm{HCl}$ to pH 3 , extracted into EA, and evaporated to give a pale brownish oil. The residue was reacetylated $\left(\mathrm{Ac}_{2} \mathrm{O} / \mathrm{pyr}\right)$, and sgc (25% EA in Hex) afforded bromo epoxide 20 ($10.5 \mathrm{~g}, 57 \%$), epoxy ketone 19 (10%), and ketone 18 (5\%). Compound 20: ${ }^{1} \mathrm{H}$ NMR δ $4.79(1 \mathrm{H}, \mathrm{dd}), 4.66(1 \mathrm{H}, \mathrm{m}), 4.3(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{s})$, $2.01(3 \mathrm{H}, \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}), 2.0(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}), 0.9(3 \mathrm{H}, \mathrm{s})$, 2.0-0.9 (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta$ 204.1, 171.7, 171.1, 74.2*, 73.7*, 71.9, 63.7*, 53.2*, 49.6*, 47.9*, 47.5, 45.2*, 36.86, 36.2, 34.1, 31.6*, 31.0, 28.6, 27.7, 27.1 27.0*, 22.0*, 21.7*, 13.8*, 12.5*; MS (FAB) 451 (M - HOAc, base); HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{6^{-}}$ Br 451.1484, found 451.1465; $[\alpha]^{23}{ }_{\mathrm{D}}-40.5^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 8); mp 185$187^{\circ} \mathrm{C}$.

17: ${ }^{1} \mathrm{H}$ NMR $\delta 6.66(1 \mathrm{H}, \mathrm{d}), 4.91(1 \mathrm{H}, \mathrm{dd}), 4.87(1 \mathrm{H}, \mathrm{m}), 4.68$ $(1 \mathrm{H}, \mathrm{m}), 4.14(2 \mathrm{H}, \mathrm{AB}$, two d), $2.00(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}$, s), $0.93(3 \mathrm{H}, \mathrm{s}), 2.2-0.8$ (remaining H's, m).

18: ${ }^{1} \mathrm{H}$ NMR $\delta 7.21(1 \mathrm{H}, \mathrm{d}), 6.03(1 \mathrm{H}, \mathrm{b}, \mathrm{s}), 4.62(1 \mathrm{H}, \mathrm{m}), 4.23$ $(1 \mathrm{H}, \mathrm{dd}), 2.22(3 \mathrm{H}, \mathrm{s}), 1.96(3 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{s}), 0.92(3 \mathrm{H}, \mathrm{s}), 2.4-$ 0.6 (remaining H's, m); ${ }^{13} \mathrm{C}$ NMR δ 193.2, 170.8, 170.6, 167.8, 153.3, $143.8,120.9,75.2,73.2,58.1,52.0,44.2,37.0,35.9,34.8,33.8,29.1$, 28.0, 27.8, 27.3, 27.2, 21.5, 21.4, 14.5, 12.2; MS (EI) 414 (M), 354 (M - HOAc, base), (CI) 415 (M + H, base), 355 ($\mathrm{M}+\mathrm{H}-\mathrm{HOAc}$); HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5} 414.2406$, found 414.2400 .

19: ${ }^{1} \mathrm{H}$ NMR $\delta 4.87(1 \mathrm{H}, \mathrm{dd}), 4.63(1 \mathrm{H}, \mathrm{m}), 3.49(1 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}$, s), $1.98(3 \mathrm{H}, \mathrm{s}), 1.97(3 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), 2.3-0.6$ (remaining H's, m).
(67) Magnus, P.; Miknis, G. F.; Press: N. J.; Grandjean, D.; Taylor, G. M.; Harling, J. J. Am. Chem. Soc. 1997, 119, 6739.
(68) (a) Kaneko, K.; Niitsu, K.; Yoshida, N.; Mitsuhashi, H. Phytochemistry 1980, 19, 299. (b) Tschesche, R.; Schwinum, E. Chem. Ber. 1967, 100, 464.

Vinyl Epoxide 21 and Dienyl Alcohol 22. A solution of bromo epoxide 20 ($73 \mathrm{mg}, 0.14 \mathrm{mmol}$) was stirred with $\mathrm{LiF}(109 \mathrm{mg})$ and $\mathrm{Li}_{2} \mathrm{CO}_{3}(207 \mathrm{mg})$ in DMF at $100{ }^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was cooled and diluted with EA. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated to give pale yellow oil; sgc (EA/Hex) afforded 21 and $\mathbf{2 2}$ as well as SM 20 (20:21:22 $=0.5: 1.0: 0.3)$. Vinyl epoxide 21: ${ }^{1} \mathrm{H}$ NMR $\delta 5.68(1 \mathrm{H}$, brd, $J=0.9 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{dd})$, $4.66(1 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}), 2.03(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s})$, $1.43(3 \mathrm{H}, \mathrm{s}), 0.86(3 \mathrm{H}, \mathrm{s}), 2.2-0.6$ (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}) \delta 204.9,171.1,170.1,161.8,119.6^{*}, 74.5^{*}, 73.7^{*}, 71.4,65.1^{*}$, 54.1, 50.4*, $44.3^{*}, 37.1,36.2,34.3^{*}, 34.2,29.5,28.2,27.7,27.2^{*}, 26.9$, 21.9*, 21.7*, 16.4*, 12.3*; MS (EI) 430 (M), 387 (M $-\mathrm{COCH}_{3}$, base), (CI) $431(\mathrm{M}+\mathrm{H}), 371(\mathrm{M}+\mathrm{H}-\mathrm{HOAc}$, base); HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6} 430.2355$, found 430.2339.

22: ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 6.70(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{d}$, $J=6.0 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{dd}), 4.72(1 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{s}), 2.62(1 \mathrm{H}, \mathrm{s})$, $2.30(3 \mathrm{H}, \mathrm{s}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{s})$, 2.2-0.6 (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta$ 211.4, 171.9, 171.1, $140.1,134.8^{*}, 133.2,132.7^{*}, 91.2,73.6^{*}, 71.3^{*}, 51.5,50.3^{*}, 44.3^{*}$, $38.0,36.5,34.3,30.1,29.0,28.8^{*}, 27.8,25.6,21.9^{*}, 21.8^{*}, 19.0^{*}, 13.4^{*}$; MS (EI) $387\left(\mathrm{M}-\mathrm{COCH}_{3}\right), 327\left(\mathrm{M}-\mathrm{COCH}_{3}-\mathrm{HOAc}\right.$, base), (CI) $431(\mathrm{M}+\mathrm{H}), 413\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right), 353\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}\right.$, base).

Tertiary Allylic Alcohol 25. Zinc dust ($253 \mathrm{mg}, 3.87 \mathrm{mmol}$) and $\mathrm{CuI}(270 \mathrm{mg}, 1.4 \mathrm{mmol})$ were sonicated in $50 \% \mathrm{EtOH}(10 \mathrm{~mL})$. After formation of a black suspension (0.5 h), a solution of bromo epoxide 20 ($221 \mathrm{mg}, 0.43 \mathrm{mmol}$) in a minimum of THF was added and sonication was continued until TLC indicated consumption of 20 (~ 15 h). Addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, filtration, extraction with EA, and sgc afforded $25(183 \mathrm{mg}, 99 \%) .{ }^{1} \mathrm{H}$ NMR $\delta 6.25(1 \mathrm{H}, \mathrm{dd}, J=5.9,1.7$ $\mathrm{Hz}), 5.91(1 \mathrm{H}, \mathrm{dd}, J=5.7,3.3 \mathrm{~Hz}), 5.42(1 \mathrm{H}, \mathrm{dd}), 4.68(1 \mathrm{H}, \mathrm{m}), 3.70$ $(1 \mathrm{H}, \mathrm{s}), 2.45(1 \mathrm{H}, \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s}), 2.1(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 0.9(3 \mathrm{H}$, s), $0.85(3 \mathrm{H}, \mathrm{s}), 2.0-1.0$ (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta$ $211.5,172.4,171.1,138.1^{*}, 132.1^{*}, 90.6,73.7^{*}, 72.7^{*}, 55.3^{*}, 55.1$, $53.8^{*}, 45.1^{*}, 36.8,36.1,34.2,31.9,31.5^{*}, 28.8^{*}, 28.7,27.7,27.2,21.9^{*}$, $21.7^{*}, 13.3^{*}, 12.6^{*}$; MS (EI) 432 (M), 269 (M $-\mathrm{COCH}_{3}-2 \mathrm{HOAc}$, base), (CI) $433(\mathrm{M}+\mathrm{H}), 415\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right.$, base); HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{6}$ 432.2511, found 432.2494. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{6}$: C, 69.42; H, 8.39. Found: C, 69.05; H, 8.74. $[\alpha]^{25}{ }_{\mathrm{D}}-50.6^{\circ}$ $\left(\mathrm{CHCl}_{3}\right.$, c 12); mp $70-73{ }^{\circ} \mathrm{C}$ (foam).

TMS Ether 26. To a solution of alcohol $25(270 \mathrm{mg}, 1.4 \mathrm{mmol})$ in pyridine at $0^{\circ} \mathrm{C}$ was added TMSOTf $(0.86 \mathrm{~mL}, 4.4 \mathrm{mmol})$. The mixture was stirred for 1 h , then partitioned between EA and saturated NaHCO_{3}. The organic layer was washed with saturated CuSO_{4}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and sgc (10% EA in Hex) afforded 26 as a white foam $(1.41 \mathrm{~g}, 94 \%) .{ }^{1} \mathrm{H}$ NMR $\delta 6.04(1 \mathrm{H}, \mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}), 5.87(1 \mathrm{H}$, dd, $J=6.0,3.6 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{dd}), 4.67(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m}), 2.19$ $(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{s}), 0.71(3 \mathrm{H}, \mathrm{s}), 0.15(9 \mathrm{H}$, s), 2.0-0.8 (remaining H, m); ${ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta 212.0,172.0$, 170.0, 136.2*, 134.1*, 94.0, 73.9*, 73.8*, 56.2*, 56.0, 53.8*, 45.0*, $30.5,36.0,34.0,32.0,31.9^{*}, 29.0,28.0,27.0,26.5^{*}, 22.0^{*}, 12.5^{*}, 2.0^{*}$; MS (EI) $461\left(\mathrm{M}-\mathrm{COCH}_{3}\right.$, base), (CI) $505(\mathrm{M}+\mathrm{H}), 415(\mathrm{M}+\mathrm{H}-$ $\mathrm{H}_{2} \mathrm{O}$ - TMS, base); HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si} 504.2906$, found 504.2888.

Epoxide 27. To a solution of allyl TMS ether 26 ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added an excess of 0.1 M dimethyldioxirane in acetone. The mixture was stirred during 10 d with fresh DMDO added repeatedly. The solvent was evaporated, and sgc gave 27 ($3 \mathrm{mg}, 30 \%$) and $26(6 \mathrm{mg}, 60 \%) .{ }^{1} \mathrm{H}$ NMR $\delta 5.12(1 \mathrm{H}, \mathrm{dd}), 4.65(1 \mathrm{H}, \mathrm{m}), 3.45$ $(2 \mathrm{H}, \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}, \mathrm{s}), 1.01(3 \mathrm{H}, \mathrm{s}), 0.85$ $(3 \mathrm{H}, \mathrm{s}), 0.17(9 \mathrm{H}, \mathrm{s}), 2.0-0.8$ (remaining H, m); ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 209.7,171.2,170.3,89.4,74.1^{*}, 73.8^{*}, 57.4^{*}, 53.9^{*}, 53.5^{*}, 52.7^{*}$, 47.0, 45.1*, 36.7, 36.3, 34.2, 31.9, 31.3*, 28.7, 27.9*, 27.7, 27.4, 21.9*, $21.8^{*}, 14.7^{*}, 12.5^{*}, 2.2^{*}$.

Diol 28. To a solution of olefin $26(1.39 \mathrm{~g}, 2.75 \mathrm{mmol})$ in pyridine was added $\mathrm{OsO}_{4}(840 \mathrm{mg}, 3.3 \mathrm{mmol})$. The mixture was stirred for 10 h, then hydrolyzed with saturated NaHSO_{3} for $5 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the precipitate was collected by filtration (Celite) and washed with warm $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were washed twice with saturated CuSO_{4}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated; sgc (35% EA in Hex) provided $28(1.43 \mathrm{~g}, 96 \%)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR $\delta 5.82(1 \mathrm{H}, \mathrm{d}, J$
$=4.5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}$ exchangeable $), 5.08(1 \mathrm{H}, \mathrm{d}), 4.7(1 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}$, dd, $J=6.0,4.5 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{m}), 3.0(1 \mathrm{H}, \operatorname{brd}, J=1.5 \mathrm{~Hz}), 2.2(3 \mathrm{H}$, s), $2.0(3 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.2(9 \mathrm{H}, \mathrm{s})$, 2.1-0.9 (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 218.3,171.1,170.1$, 89.5, 82.9*, 74.3*, 73.9*, 71.0*, 53.7, 52.7*, 52.5*, 45.0*, 36.9, 36.1, 34.2, 31.7, 31.0*, 28.7, 28.5*, 27.7, 27.0, 21.9*, 21.8*, 12.7*, 12.5*, 1.9*; MS (EI) 538 (M), 435 (M - $\mathrm{COCH}_{3}-\mathrm{HOAc}$, base), (CI) 539 $(\mathrm{M}+\mathrm{H}), 479\left(\mathrm{M}+\mathrm{H}-\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}\right.$, base); HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{8}$ Si 538.2961, found 538.2955. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{8} \mathrm{Si}$: C, 62.42; H, 8.61; Si, 5.21. Found: C, 62.16; H, 8.94; Si, 4.87. $[\alpha]^{23}{ }_{D}$ -22.0° in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c 11).

Cyclic Sulfate 33. To a well-stirred solution of diol $28(0.20 \mathrm{~g}, 0.37$ $\mathrm{mmol})$ in pyridine at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{SOCl}_{2}(0.8 \mathrm{~mL})$ dropwise over 5 min . The ice bath was removed and the mixture was stirred for 30 min, diluted with EA, and washed with saturated CuSO_{4}, then passed through silica to give 33a. The sulfite 33a was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{NaIO}_{4}(120 \mathrm{mg}, 0.56 \mathrm{mmol})$ was added followed by a catalytic amount (5%) of RuCl_{3} hydrate and 10 mL of $\mathrm{H}_{2} \mathrm{O}$. After 10 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and worked up to afford $\mathbf{3 3 b}(219 \mathrm{mg}, 99 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\delta 5.23(1 \mathrm{H}$, brt, $J=5.7,5.4 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{dd}), 4.78(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 4.67$ $(1 \mathrm{H}, \mathrm{m}), 2.4(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}$, s), $0.12(9 \mathrm{H}, \mathrm{s}), 2.0-0.9$ (remaining H, m); ${ }^{13} \mathrm{C}$ NMR (50 MHz$) \delta$ $204.3,171.0,170.1,89.7,87.4^{*}, 84.2^{*}, 73.6^{*}, 73.0^{*}, 53.2,52.4^{*}, 52.0^{*}$, $44.9^{*}, 36.8,36.2,34.1,31.3^{*}, 31.0,30.8^{*}, 28.4,27.6,26.5,21.8^{*}, 21.2^{*}$, $12.5^{*}, 12.2^{*}, 2.3^{*}$; MS (EI) $557\left(\mathrm{M}-\mathrm{COCH}_{3}\right), 497\left(\mathrm{M}-\mathrm{COCH}_{3}-\right.$ HOAc), (CI) $601(M+H)$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{10} \mathrm{~S}_{1} \mathrm{Si}$ 600.2425, found 600.2404. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{10} \mathrm{~S}_{1} \mathrm{Si}$: C, 55.98; H, 7.4; S, 5.34; Si, 4.67. Found: C, 56.10; H, 7.55; S, 5.23; Si, 4.45. $[\alpha]^{23}{ }_{\mathrm{D}}-54.0^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c 12); mp: 202-204 ${ }^{\circ} \mathrm{C}$.

33a (a pair of diastereomers): ${ }^{1} \mathrm{H}$ NMR $\delta 5.43$ and 5.08 (H-15, brt), 5.01 and $4.59(\mathrm{H}-16, \mathrm{~d}), 4.98(\mathrm{H}-12, \mathrm{dd}), 4.69(\mathrm{H}-3, \mathrm{~m}), 2.42$ and 2.38 (Me-21, s), 2.01 (C-3 OAc, s), 1.92 (C-12 OAc, s), 1.42 and 1.09 (Me18, s), 0.87 (Me-19, s), 0.15 and 0.12 (OTMS, s)

Hydroxy Epoxide 36. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of cyclic sulfate 33 (6 $\mathrm{mg}, 0.01 \mathrm{mmol})$ was added DBU ($4 \mathrm{mg}, 0.03 \mathrm{mmol}$). After 10 h , the mixture was poured into ice-cold sulfuric acid solution (1 N) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine and dried over MgSO_{4}. After evaporation of solvent, crude epoxide $36(5.5 \mathrm{mg})$ was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR $\delta 4.82(1 \mathrm{H}$, dd), $4.81(1 \mathrm{H}, \mathrm{d}), 4.18(1 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.99(3 \mathrm{H}, \mathrm{s})$, $1.97(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s})$.

Allylic Alcohol 40. To a solution of cyclic sulfate 33 ($0.24 \mathrm{~g}, 0.39$ mmol) in toluene $(\sim 0.01 \mathrm{M})$ was added tetrabutylammonium iodide ($1.1 \mathrm{~g}, \sim 7$ equiv). The mixture was stirred for 15 h at reflux and then cooled. Precipitated TBAI was removed by filtration and washed twice with toluene. The combined organic filtrates were evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $60 \% \mathrm{mCPBA}(336 \mathrm{mg}, \sim 3$ equiv) was added. After 3 h , the mixture was poured into cold $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed successively with saturated NaHCO_{3} and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration under reduced pressure, the yellowish residue was dissolved in THF $(10 \mathrm{~mL})$ to which $\mathrm{H}_{2} \mathrm{O}(0.1$ mL) had been added. The clear solution was carefully acidified to pH 3 with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and stirred for 2 h (until TLC analysis indicated all the ammonium salt had been hydrolyzed), then diluted with EA, washed with saturated NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford a yellow oil in which only $\mathbf{4 0}$ was observed by ${ }^{1}$ H NMR analysis. Sgc (15% EA in Hex) gave 40 (81\%) as a white foam. ${ }^{1} \mathrm{H}$ NMR $\delta 5.46(1 \mathrm{H}, \mathrm{dd}, J=2.1,2.1 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{dd}), 5.13$ $(1 \mathrm{H}$, brd, $J=2.7 \mathrm{~Hz}), 4.69(2 \mathrm{H}, \mathrm{m}), 2.26(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 2.01$ $(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.16(9 \mathrm{H}, \mathrm{s}), 2.1-0.9$ (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 217.5,171.1,170.0,155.6,122.2$ *, 88.4, 83.5*, 73.7*, 73.3*, 57.7, 50.5*, 44.3*, 37.0, 36.1, 35.0*, 34.2, 30.0, 28.5*, 28.4, 27.7, 27.1, 21.9*, 21.9*, 17.3*, 12.3*, 2.2*; MS (EI) 520 (M), $477\left(\mathrm{M}-\mathrm{COCH}_{3}\right),(\mathrm{CI}) 521(\mathrm{M}+\mathrm{H}), 503\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right.$, base); HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si} 520.2856$, found 520.2882. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si}$: C, 64.58; H, 8.52; Si, 5.39. Found: C, 64.81; H, 8.73; Si, 5.13; $[\alpha]^{23}{ }_{\mathrm{D}}+9.60^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c 9).

Iodide 37: ${ }^{1} \mathrm{H}$ NMR $\delta 5.03(1 \mathrm{H}, \mathrm{brs}), 4.94(1 \mathrm{H}, \mathrm{dd}), 4.69(1 \mathrm{H}, \mathrm{m})$, $4.12(1 \mathrm{H}, \mathrm{dd}), 2.86(8 \mathrm{H}, \mathrm{m}), 2.43(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.88(3 \mathrm{H}, \mathrm{s})$, $1.24(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), 0.21(9 \mathrm{H}, \mathrm{s})$.

Sulfate 39: ${ }^{1} \mathrm{H}$ NMR $\delta 5.83(1 \mathrm{H}$, brs $), 5.28(1 \mathrm{H}$, brs $), 5.12(1 \mathrm{H}$, dd), $4.69(1 \mathrm{H}, \mathrm{m}), 3.57(8 \mathrm{H}, \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.99(3 \mathrm{H}$, s), $1.18(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), 0.18(9 \mathrm{H}, \mathrm{s})$.
$\boldsymbol{\alpha}$-Phosphonate Esters 46. A solution of the diazophosphonate ketone $44(16 \mathrm{mg}, 0.075 \mathrm{mmol})$ in benzene was added to a mixture of a catalytic amount of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ and the allylic alcohol $40(13 \mathrm{mg}$, 0.025 mmol) in benzene at reflux over 15 min . The solvent was removed by evaporation, and sgc yielded α-phosphonate esters 46 (17 mg , $>98 \%)$ as a diastereomeric mixture. ${ }^{1} \mathrm{H}$ NMR $\delta 5.60(2 \mathrm{H}, \mathrm{d}, J=2.4$ $\mathrm{Hz}), 5.32(2 \mathrm{H}, \mathrm{brt}), 5.22(2 \mathrm{H}, \mathrm{dd}), 4.69(2 \mathrm{H}, \mathrm{m}), 4.13(4 \mathrm{H}, \mathrm{m}), 3.05$ $(2 \mathrm{H}, \mathrm{m}), 2.15(3 \mathrm{H}, \mathrm{s}), 2.14(3 \mathrm{H}, \mathrm{s}), 2.02(6 \mathrm{H}, \mathrm{s}), 2.0(6 \mathrm{H}, \mathrm{s}), 1.56(6 \mathrm{H}$, two dd), $1.31(6 \mathrm{H}, \mathrm{m}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 0.85(6 \mathrm{H}, \mathrm{s}), 0.19$ ($9 \mathrm{H}, \mathrm{s}$), 2.0-0.8 (remaining H, m); ${ }^{13} \mathrm{C}$ NMR (50 MHz) δ 209.3, 208.5, $171.1,170.4,170.1,170.1,169.4,169.3,159.7,159.6,117.4^{*}, 117.4^{*}$, 89.6, 89.4, 83.8*, 83.6*, 73.7*, 73.1*, 63.3, 63.1, 63.0, 58.4, 58.2, 50.7*, 44.4*, 41.9*, 41.1*, 39.3*, 38.4*, 37.0, 36.2, 35.1*, 34.2, 29.8, 29.2*, $29.2^{*}, 28.3,27.7,26.9,21.9^{*}, 21.8^{*}, 17.3^{*}, 16.9^{*}, 16.8^{*}, 16.8^{*}, 12.3^{*}$, $12.2^{*}, 12.1^{*}, 11.9^{*}, 11.8^{*}, 2.8^{*}$.

Dihydrofuran Ester 53. A solution of the diazophosphonate ester 51 ($645 \mathrm{mg}, 2.58 \mathrm{mmol}$) in benzene was added dropwise via syringe drive over 5 to 6 h to a mixture of a catalytic amount (3-4\%) of $\mathrm{Rh}_{2^{-}}$ $(\mathrm{OAc})_{4}$ and the allylic alcohol $40(450 \mathrm{mg}, 0.86 \mathrm{mmol})$ in benzene at reflux. The solvent was removed by evaporation, and sgc of a portion of the residue for analytical purposes provided $\mathbf{5 2}$ as a diastereomeric mixture. The crude product 52 was used directly for the synthesis of 53 by slow addition of $\mathrm{NaH}\left(155 \mathrm{mg}, 1.5\right.$ equiv) in THF at $0^{\circ} \mathrm{C}$. After $30 \mathrm{~min}, \mathrm{EA}$ and $\mathrm{H}_{2} \mathrm{O}$ were added, the aqueous layer was extracted with EA, and the combined organic layers were washed with brine and dried. Solvent removal and sgc (10% EA in Hex) gave 53 ($380 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta 5.45(1 \mathrm{H}$, app t, $J=2.4 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$, $5.04(1 \mathrm{H}, \mathrm{dd}), 4.68(1 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{q}), 2.02(6 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}, \mathrm{s})$, $1.35(3 \mathrm{H}, \mathrm{t}), 1.07(3 \mathrm{H}, \mathrm{s}), 0.86(3 \mathrm{H}, \mathrm{s}), 0.09(9 \mathrm{H}, \mathrm{s}), 2.04-0.9$ (remaining H, m); ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 171.1,170.0,161.7,160.2$, $142.8,126.8,117.6^{*}, 98.5,93.9^{*}, 73.9^{*}, 73.7^{*}, 61.5,58.9,50.8^{*}, 44.4^{*}$, $37.0,36.2,34.8^{*}, 34.2,29.9,28.4,27.7,27.2,21.9^{*}, 21.9^{*}, 18.2^{*}, 14.7^{*}$, 12.4*, 11.2*, 2.0*; MS (EI) 588 (M), 528 (M - HOAc); HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{Si}$ 588.3118, found 588.3097. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{55} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 65.28 ; \mathrm{H}, 8.22$; Si, 4.77. Found: C, $65.61 ; \mathrm{H}, 8.57 ; \mathrm{Si}$, 4.51. $[\alpha]^{24} \mathrm{D}-57.5^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(c 10) \mathrm{mp} 90-94{ }^{\circ} \mathrm{C}$ (typically used as the crude foam).

52: ${ }^{1} \mathrm{H}$ NMR $\delta 5.58(1 \mathrm{H}$, brs $), 5.06(1 \mathrm{H}$, two dd), $4.69(2 \mathrm{H}, \mathrm{m})$, $4.54(1 \mathrm{H}, \mathrm{brs}), 4.4-4.1(6 \mathrm{H}, \mathrm{m}), 2.30(3 \mathrm{H}$, two s), $2.01(6 \mathrm{H}$, four s), 1.21 and $1.18(3 \mathrm{H}$, two s), $1.82(3 \mathrm{H}, \mathrm{s}), 0.17(9 \mathrm{H}, \mathrm{s})$.

Dihydrofuran Aldehyde 2. A mixture of dihydrofuran ester 53 (0.41 $\mathrm{g}, 0.70 \mathrm{mmol})$ and $2.0 \mathrm{M} \mathrm{LiBH}_{4}(1.3 \mathrm{~mL}, 2.6 \mathrm{mmol})$ in THF was stirred at reflux for 5 h . The solution was quenched with cold $\mathrm{H}_{2} \mathrm{O}$ and the water layer was extracted twice with EA. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, passed through silica gel, and evaporated. The residual oil (54a/54b) was redissolved in EA and MnO_{2} $(1.21 \mathrm{~g})$ was added. Vigorous stirring was continued for 3 h . The mixture was filtered (Celite) and the filtrate was evaporated and acetylated $\left(\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DMAP}\right)$ to afford pentacyclic aldehyde 2 (232 $\mathrm{mg}, 61 \%)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR $\delta 9.69(1 \mathrm{H}, \mathrm{s}), 5.45(1 \mathrm{H}, \mathrm{dd}, J=$ $2.4,2.1 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{dd}), 4.67(1 \mathrm{H}, \mathrm{m})$, $2.04(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.09$ $(9 \mathrm{H}, \mathrm{s}), 2.04-0.9$ (remaining H's, m); ${ }^{13} \mathrm{C}$ NMR (50 MHz$) \delta 182.4^{*}$, 171.1, 170.0, 160.2, 150.1, 132.5, 117.5*, 98.3, 94.0*, 73.7*, 73.7*, 58.9, 50.8*, 44.4*, 37.0, 36.2, 34.8*, 34.2, 30.0, 28.4, 27.7, 27.1, 21.9*, $18.1^{*}, 12.4^{*}, 9.4^{*}, 2.1^{*}$; MS (EI) 544 (M), 515 (M - CHO), (CI) 545 $(\mathrm{M}+\mathrm{H}), 395(\mathrm{M}+\mathrm{H}-2 \mathrm{HOAc}-\mathrm{HCOH}$, base $)$; HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si} 544.2856$, found 544.2850; $[\alpha]^{23}{ }_{\mathrm{D}}-50.3^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c 6).

54a: ${ }^{1} \mathrm{H}$ NMR $\delta 5.40(1 \mathrm{H}, \mathrm{br}, \mathrm{t}), 5.07(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 5.03$ $(1 \mathrm{H}, \mathrm{dd}), 4.17(2 \mathrm{H}, \mathrm{d}), 3.60(1 \mathrm{H}, \mathrm{m}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.08$ $(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.09(9 \mathrm{H}, \mathrm{s}), 2.1-0.8$ (remaining H's, m); MS (EI) 504 (M, base), 444 (M - HOAc), (CI) 504, 415 (M + H HOTMS, base); HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si} 504.2907$, found 504.2917.

54b: ${ }^{1} \mathrm{H}$ NMR $\delta 5.40(1 \mathrm{H}, \mathrm{br}, \mathrm{t}), 5.07(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 5.03$ $(1 \mathrm{H}, \mathrm{dd}), 4.69(1 \mathrm{H}, \mathrm{m}), 4.18(2 \mathrm{H}, \mathrm{br}, \mathrm{d}), 2.04(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s})$, $1.65(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.09(9 \mathrm{H}, \mathrm{s}), 2.1-0.9$ (remaining

H’s, m); MS (EI) 546 (M, base), 486 (M - HOAc), (CI) 546 (M), 457 ($\mathrm{M}+\mathrm{H}-\mathrm{HOTMS}$, base); HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{Si} 546.3013$, found 546.3018 .

Homoallylic Alcohols 3 and 4 (from 2). A solution of aldehyde 2 $(0.21 \mathrm{~g}, 0.39 \mathrm{mmol})$ in 5.0 M LPDE (lithium perchlorate diethyl ether) was treated with methallylstannane ($0.27 \mathrm{~g}, 0.78 \mathrm{mmol}$). After 1 h , the mixture was poured into cold water and EA. The aqueous layer was extracted twice with EA. The combined organic layers were washed with brine, dried, and evaporated to give an oil (1.3:1 3:4 by ${ }^{1} \mathrm{H}$ NMR), and sgc ($1 \% \mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $3(126 \mathrm{mg})$ and $4(100 \mathrm{mg})$. Compound 3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.35(1 \mathrm{H}$, brs $), 5.29(1 \mathrm{H}, \mathrm{dd}), 5.14$ $(1 \mathrm{H}$, brd, $J=2.4 \mathrm{~Hz}), 4.78(1 \mathrm{H}, \mathrm{brs}), 4.76(1 \mathrm{H}, \mathrm{brs}), 4.64(1 \mathrm{H}, \mathrm{m})$, $4.47(1 \mathrm{H}, \mathrm{m}), 2.45(2 \mathrm{H}, \mathrm{m}), 1.8(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s})$, $1.59(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 0.44(3 \mathrm{H}, \mathrm{s}), 0.19(9 \mathrm{H}, \mathrm{s}), 2.04-0.5$ (remaining H, m); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.3,168.7,159.1,154.0,141.6$, $117.5^{*}, 113.2,108.0,98.9,93.7^{*}, 73.6^{*}, 72.8^{*}, 65.0^{*}, 58.2,50.3^{*}$, 43.6, 43.4*, 35.9, 35.3, 34.1*, 33.9, 29.3, 27.8, 27.4, 27.1, 22.4*, 21.0*, 20.8*, 17.8*, 11.4*, 8.8*, 1.6*; MS (EI) 600 (M), 545 (M - $\mathrm{C}_{4} \mathrm{H}_{7}$); HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{Si} 600.3482$, found 600.3458; $[\alpha]^{23}{ }_{\mathrm{D}}-$ $24.4^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 6\right)$.

4: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.41(1 \mathrm{H}$, brt $), 5.32(1 \mathrm{H}, \mathrm{dd}), 5.15(1 \mathrm{H}$, brd, $J=2.4 \mathrm{~Hz}), 4.80(1 \mathrm{H}$, brs $), 4.86(1 \mathrm{H}$, brs $), 4.67(1 \mathrm{H}, \mathrm{m}), 4.54(1 \mathrm{H}$, m), $2.55(2 \mathrm{H}, \mathrm{m}), 1.85(3 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s})$, $1.23(3 \mathrm{H}, \mathrm{s}), 0.51(3 \mathrm{H}, \mathrm{s}), 0.19(9 \mathrm{H}, \mathrm{s}), 2.04-0.5$ (remaining $\mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.4,168.7,159.6,154.1,141.8,117.4^{*}, 113.4$, 108.1, 98.8, $93.6^{*}, 73.5^{*}, 72.9^{*}, 65.1^{*}, 58.4,50.2^{*}, 43.4^{*}, 43.1,36.0$, $35.3,34.2^{*}, 33.9,29.3,27.8,27.4,27.0,22.3^{*}, 21.0^{*}, 20.8^{*}, 17.8^{*}$, 11.4*, $8.7^{*}, 1.6^{*}$; MS (EI) $600(\mathrm{M}), 485\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}-\mathrm{HOAc}\right.$, base), (CI) $601(\mathrm{M}+\mathrm{H}), 511(\mathrm{M}+\mathrm{H}-\mathrm{HOTMS}$, base); HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{Si} 600.3482$, found 600.3494; $[\alpha]^{22}{ }_{\mathrm{D}}-39.6^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c\right.$ 0.5).

Alcohol 3 (from 56). Formate 56 ($40 \mathrm{mg}, 0.064 \mathrm{mmol}$) in MeOH $(10 \mathrm{~mL})$ was heated at reflux for 15 h , then cooled and concentrated. Sgc gave 3 (33 mg , 87\%) .

Formate 56 (from 4). A toluene (0.8 mL) solution of alcohol 4 (50 $\mathrm{mg}, 0.083 \mathrm{mmol}), \mathrm{PPh}_{3}(109 \mathrm{mg}, 0.417 \mathrm{mmol})$, and formic acid (19 $\mathrm{mg}, 0.42 \mathrm{mmol}$) was treated with diethyl azodicarboxylate (DEAD, 73 $\mathrm{mg}, 0.42 \mathrm{mmol})$. After 2 h , concentration and $\mathrm{sgc}(10 \% \mathrm{EA} / \mathrm{Hex})$ gave $40 \mathrm{mg}(77 \%)$ of formate 56. ${ }^{1} \mathrm{H}$ NMR $\delta 8.07(1 \mathrm{H}, \mathrm{s}), 5.78(1 \mathrm{H}, \mathrm{t})$, $5.39(1 \mathrm{H}, \mathrm{brs}), 5.02(1 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{dd}), 4.80(1 \mathrm{H}, \mathrm{s}), 4.73(1 \mathrm{H}, \mathrm{s})$, $4.70(1 \mathrm{H}, \mathrm{m}), 2.48(2 \mathrm{H}, \mathrm{m}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.99(3 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{s})$, $1.71(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s}), 0.02(9 \mathrm{H}, \mathrm{s}), 2.2-0.8$ (remaining H's, m); ${ }^{13} \mathrm{C}$ NMR δ 170.7, 169.7, 160.1, 159.1, 149.4, 139.8, 117.3, $114.1,111.9,98.0,93.6,73.8,73.4,65.6,58.2,50.6,44.1,39.6,36.6$, $35.9,34.3,33.9,29.5,28.1,27.3,26.9,22.6,21.6,21.5,17.8,12.0$, 8.8, 1.6; MS (EI) 628 (M, base), 583 (M - OCHO), (CI) 629 ($\mathrm{M}+$ H), 583 (M + H - HOCHO, base); HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{Si}$ 628.3431 , found 628.3443 .

Tetraol 57. Alcohol 3 and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH was refluxed for 5 h to afford 57, which was crystallized from $\mathrm{MeOH} / \mathrm{Hex}(1: 3.5) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.33(1 \mathrm{H}$, brt $), 4.69(1 \mathrm{H}$, brs $), 4.65(1 \mathrm{H}$, brs $), 4.41(1 \mathrm{H}$, app $\mathrm{t}, J=7.3 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{dd}), 3.5(1 \mathrm{H}, \mathrm{m}), 2.30(2 \mathrm{H}$, brd $), 2.13$ $(1 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{s}), 2.1-0.7$ (remaining H, m); MS (FAB, NBA matrix) 467 (M + Na); HRMS (FAB, KIPEG/NBA/NaI matrix) calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{5}+\mathrm{Na} 467.2773$, found 467.2759; mp $160^{\circ} \mathrm{C}$ dec.

TBDPS Ether 61. To a solution of AgNO_{3} ($30 \mathrm{mg}, 2$ equiv) and alcohol $3(53 \mathrm{mg}, 0.089 \mathrm{mmol})$ in DMF was added TBDPSCl $(47 \mu \mathrm{~L}$, 2 equiv). A white precipitate formed immediately. After 15 min , the mixture was diluted with EA and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried, and sgc provided pure $61(73 \mathrm{mg}, 98 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR δ $7.72(4 \mathrm{H}, \mathrm{m}), 7.38(6 \mathrm{H}, \mathrm{m}), 5.40(1 \mathrm{H}$, brt $), 5.0(1 \mathrm{H}$, brd, $J=2.4 \mathrm{~Hz})$, $4.96(1 \mathrm{H}, \mathrm{dd}), 4.68(1 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}$, brs $), 4.51(1 \mathrm{H}, \mathrm{brs}), 4.42(1 \mathrm{H}$, dd), $2.02(3 \mathrm{H}, \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s})$, $0.94(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{s}), 0.03(9 \mathrm{H}, \mathrm{s}), 2.4-0.7$ (remaining $\mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 170.0,170.0,159.8,154.6,141.5,136.9^{*}$, 136.9*, 134.8, 134.5, 130.5*, 130.5*, 118.4*, 114.3, 109.4, 99.5, 93.5*, 74.4*, 73.5*, 67.7*, 59.2, 51.0*, 44.5, 44.1*, 36.7, 36.0, 34.8*, 34.6, $30.0,28.5,28.1,27.7^{*}, 22.8^{*}, 21.7^{*}, 21.5^{*}, 20.1,18.5^{*}, 12.1^{*}, 9.6^{*}$, 2.6*; MS (FAB, DTT/DTE matrix) 839 (M); HRMS (FAB, KIPEG/ DTT/DTE matrix) calcd for $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{2}$ 839.4738, found 839.4657.

Diols 62S/62R. To a solution of $[S, S]$ Corey ligand $\mathbf{6 3}(310 \mathrm{mg}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.03 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ was added OsO_{4} (1 equiv) in one portion. After 30 min , the mixture was cooled to $-98^{\circ} \mathrm{C}$ and a precooled solution of TBDPS ether $61(420 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added by cannula over 5 min . After 1 h , powdered NaHSO_{3} was added, the reaction was warmed, and the solvent was removed in vacuo. The residue was taken up in aqueous THF and refluxed for 11 h. The solids were filtered off and washed with EA, and the combined filtrates were washed with brine and dried. The inseparable mixture of crude diols $\mathbf{6 2 S} / 62 \boldsymbol{R}(S-\mathrm{C} 25: R-\mathrm{C} 25=4: 1)$ was purified by sgc (414 $\mathrm{mg}, 95 \%) .{ }^{1} \mathrm{H}$ NMR $\delta 7.8(4 \mathrm{H}, \mathrm{m}), 7.4(6 \mathrm{H}, \mathrm{m}), 5.43(1 \mathrm{H}$, brs $), 4.95$ $(\mathrm{H}-12$, two dd), $4.87(1 \mathrm{H}, \mathrm{s}), 4.65(2 \mathrm{H}, \mathrm{m}), 3.35(1 \mathrm{H}, \mathrm{s}), 3.15(2 \mathrm{H}, \mathrm{m})$, 2.02 and $2.00(3 \mathrm{H}$, two s $(1: 4)), 1.95(3 \mathrm{H}$, two s), $1.65(3 \mathrm{H}, \mathrm{s}), 1.24$ $(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}$, two s), $0.96(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), 0.02$ and 0.03 (OTMS, two s (1:4)); ${ }^{13} \mathrm{C}$ NMR, the peaks at $\delta 162,118,111,98,72$, $71,23,18,8$ all show the same $1: 4$ ratio; MS (FAB, DTT/DTE matrix) 872 (M); HRMS (FAB, KIPEG/DTT/DTE matrix) calcd for $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{O}_{9} \mathrm{Si}_{2}$ 873.4792, found 873.4727.

Tetraols 66S/66R. To a solution of $\mathbf{6 2 S} / \mathbf{6 2 R}(40 \mathrm{mg}, 0.046 \mathrm{mmol})$ in THF was added TBAF ($0.18 \mathrm{~mL}, 4$ equiv) in THF. After 2 h , the solution was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EA. The organic layer was washed with brine and dried, and sgc (20% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded tetraols $\mathbf{6 6 S} / \mathbf{6 6 R}$ ($24 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.43(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 5.12(1 \mathrm{H}, \mathrm{dd}), 4.68(3 \mathrm{H}, \mathrm{m}), 3.42(1 \mathrm{H}, \mathrm{br}$, s), $3.35(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}), 1.99(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}$, s), $0.87(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.4,170.8,159.9,153.9,148.3,117.8$, $107.9,95.6,95.0,73.4,72.9,70.8,63.7,57.0,52.2,50.2,44.0,42.8$, $36.7,35.8,34.4,33.8,29.6,28.0,27.3,25.2,24.7,21.6,21.6,21.5$, 20.3, 18.6, 18.5, 13.7, 12.0, 8.0; MS (FAB, NBA matrix) $585(\mathrm{M}+$ Na); HRMS (FAB, NBA matrix) calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{9}+\mathrm{Na} 585.3040$, found 585.3046.

Bromospiroketals 71S and 71R. To a solution of diols 62S/62R (4:1 ratio; $100 \mathrm{mg}, 0.114 \mathrm{mmol}$) in THF at $-78^{\circ} \mathrm{C}$ was added NBS ($31 \mathrm{mg}, 1.5$ equiv) in one portion, followed by warming to $0^{\circ} \mathrm{C}$. After 1 h , saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated NaHCO_{3} were added, the aqueous layer was extracted with EA, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation and sgc afforded bromospiroketal 71S ($83.5 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta 7.93(4 \mathrm{H}, \mathrm{m}), 7.4(6 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{brt})$, $5.41(1 \mathrm{H}, \mathrm{dd}),, 4.83(1 \mathrm{H}$, brd, $J=1.8 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{m}), 4.71(1 \mathrm{H}$, $\mathrm{dd}), 3.04$ and $3.11(2 \mathrm{H}, \mathrm{AB}$, two d, $J=11.4 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s}), 2.01$ $(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}$, s), $0.20(9 \mathrm{H}, \mathrm{s}), 2.2-0.8$ (remaining H's, m); ${ }^{13} \mathrm{C}$ NMR (50 MHz$) \delta$ 171.1, 170.1, 162.7, 136.6*, 136.3*, 135.6, 134.1, 130.2*, 130.0*, 128.1*, 127.8*, 117.0*, 114.8, 96.0, 86.4*, 83.0, 81.6, 80.0*, 73.8*, 73.8*, 69.9, 58.9, 49.6*, 44.5*, 40.5, 37.3, 36.0, 34.6*, 34.3, 29.8, 28.5, $27.8,27.5^{*}, 27.0^{*}, 26.7,25.5^{*}, 22.0^{*}, 21.9^{*}, 19.9,18.4^{*}, 12.1^{*}, 3.8^{*}$; MS (FAB, DTT/DTE matrix) 871 ($\mathrm{M}+\mathrm{H}-\mathrm{HBr}$); HRMS (FAB, KIPEG/DTT/DTE matrix) calcd for $\mathrm{C}_{50} \mathrm{H}_{71} \mathrm{O}_{9} \mathrm{Si}_{2}$ 871.4637, found 871.4621; $[\alpha]^{25} \mathrm{D}-11.2^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c 5); mp $145-146{ }^{\circ} \mathrm{C}$.

Further elution provided $71 R(16.5 \mathrm{mg}, 15 \%):{ }^{1} \mathrm{H}$ NMR $\delta 7.82(4 \mathrm{H}$, $\mathrm{m}), 7.41(6 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}, \mathrm{brt}), 5.39(1 \mathrm{H}, \mathrm{dd}, J=11.4,4.6 \mathrm{~Hz}), 4.82$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{m}), 4.69(1 \mathrm{H}, \mathrm{dd}), 3.28(1 \mathrm{H}, \mathrm{d}), 3.04$ $(1 \mathrm{H}, \mathrm{t}), 2.73(1 \mathrm{H}, \mathrm{d}), 2.27(1 \mathrm{H}, \mathrm{t}), 2.03(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}$, s), $1.47(3 \mathrm{H}, \mathrm{s}), 1.04(9 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s})$; ${ }^{13}$ C NMR $\delta 170.6,169.6,162.7,136.2,135.9,134.8,133,7,129.9$, $129.6,127.7,127.5,116.3,114.0,95.6,86.3,82.0,81.9,79.3,73.4$, $73.4,67.9,58.5,49.2,44.1,36.7,35.7,34.2,33.9,29.4,29.3,28.1,27.4$, 27.1 (3C), 26.6, 26.2, 24.4, 21.6, 21.5, 19.5, 18.1, 11.7, 3.4; MS (FAB, DTT/DTE) 871 (M + H - HBr); HRMS (FAB, DTT/DTE) calcd for $\mathrm{C}_{50} \mathrm{H}_{71} \mathrm{O}_{9} \mathrm{Si}_{2}$ 871.4637, found 871.4641.

Bromospiroketal Diol 72. Selective monodeacetylation of $71 S$ was performed by our standard protocol ${ }^{1 \mathrm{~g}}$ to afford 72. ${ }^{1} \mathrm{H}$ NMR $\delta 7.85$ $(4 \mathrm{H}, \mathrm{m}), 7.41(6 \mathrm{H}, \mathrm{m}), 5.53(1 \mathrm{H}, \mathrm{brs}), 5.40(1 \mathrm{H}, \mathrm{dd}), 4.82(1 \mathrm{H}$, brd, J $=2.7 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \operatorname{app} q), 3.68(1 \mathrm{H}, \mathrm{m}), 3.06(2 \mathrm{H}, \mathrm{AB}$, brq $), 2.02$ $(3 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}$, s), $0.20(9 \mathrm{H}, \mathrm{s}), 2.2-0.8$ (remaining H, m).

Ketone 73. To a solution of $\mathbf{6 2 S} / \mathbf{6 2} \boldsymbol{R}$ ($4: 1 \mathrm{ratio} ; 10 \mathrm{mg}, 0.011 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ was added IDCP (iodonium dicollidine perchlorate, 18 mg , 3 equiv) in one portion. After 3 h , saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} were added, the aqueous layer was extracted with EA, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation and sgc afforded 73
($6.5 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR $\delta 4.05(1 \mathrm{H}, \mathrm{brt}), 4.95(1 \mathrm{H}, \mathrm{dd}), 4.90(1 \mathrm{H}$, brd), $4.89(1 \mathrm{H}$, app t), $4.71(1 \mathrm{H}, \mathrm{m}), 2.69(2 \mathrm{H}, \mathrm{m}), 2.09(3 \mathrm{H}, \mathrm{s}), 1.98$ $(3 \mathrm{H}, \mathrm{s}), 1.97(3 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{s}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}$, s), $-0.09(9 \mathrm{H}, \mathrm{s}), 2.2-0.8$ (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta$ 206.3, 171.1, 170.1, 160.4, 152.5, 136.7*, 136.4*, 133.9, 133.5, 130.4*, $130.2^{*}, 128.1^{*}, 128.1^{*}, 128.1^{*}, 117.6^{*}, 109.9,98.3,92.7^{*}, 74.1^{*}, 73.8^{*}$, 64.7*, 58.7, 50.7*, 49.5, 44.4*, 36.9, 36.2, 34.8*, 34.3, 31.5*, 30.0, $28.5,27.7,27.4^{*}, 27.1,21.9^{*}, 19.8,18.4^{*}, 12.3^{*}, 8^{*} 7^{*}, 2.2^{*}$, MS (FAB, NBA) 840 (M); HRMS (FAB, NBA) calcd for $\mathrm{C}_{49} \mathrm{H}_{67} \mathrm{O}_{8} \mathrm{Si}_{2} 840.4453$, found 840.4497.

Olefin 77. Procedure 1: A solution of bromide $71 S(10 \mathrm{mg}, 0.01$ mmol) in a quartz tube containing excess NaHCO_{3} in i-PrOH was irradiated at 254 nm for 1 h (Rayonet reactor). The mixture was concentrated and sgc afforded 77 (65\%). Procedure 2: (Note: Argon was carefully deoxygenated by passing through a basic pyrogallol solution followed by drying.) To a solution of bromoketal $71 S$ (45 mg , 0.050 mmol) in dimethyl sulfoxide (3 mL , redistilled) containing ethylenediamine $(0.11 \mathrm{~mL}, 1.9 \mathrm{mmol})$ was added $\mathrm{Cr}(\mathrm{OAc})_{2}(89 \mathrm{mg}$, 0.47 mmol). After 30 min , the mixture was poured into ice water and extracted into EA. Concentration and sgc provided 77 (40 mg, 99\%). ${ }^{1} \mathrm{H}$ NMR $\delta 7.76-7.34(10 \mathrm{H}, \mathrm{m}), 5.41(1 \mathrm{H}$, brs $), 5.18(1 \mathrm{H}, \mathrm{s}), 5.12$ $(1 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{dd}), 4.95(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{m}), 4.26$ $(1 \mathrm{H}, \mathrm{dd}), 3.05$ and $2.93(2 \mathrm{H}, \mathrm{AB}$, two d, $J=11.1 \mathrm{~Hz}), 2.01(6 \mathrm{H}, \mathrm{s})$, $1.57\left(3 \mathrm{H}, \mathrm{s}\right.$, overlap with $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.13(3 \mathrm{H}, \mathrm{s}), 1.06(9 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}$, s), $0.10(9 \mathrm{H}, \mathrm{s}), 2.0-0.8$ (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 2.4,11.9,14.2$, $17.9,19.1,21.4,21.5,25.5,28.0,29.4,33.8,34.4,35.8,36.5,40.2$, $44.1,50.8,56.5,60.4,69.7,73.4,74.3,75.4,80.3,91.3,92.4,110.9$, $111.4,119.9,127.5,129.8,133.5,134.0,135.9,136.1,151.5,155.1$, 169.7, 170.6; MS (FAB, NBA) 871.8 (M); HRMS (FAB, NBA) calcd for $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{O}_{9} \mathrm{Si}_{2}$ 871.4637, found 871.4625.

General Procedure for $\mathbf{C r}(\mathrm{II})$ Mediated Reductions. NB: Argon was deoxygenated by passing through a basic pyrogallol solution followed by drying. Failure to follow this precaution resulted in little or no reduction. The substrate in DMSO or DMF was deoxygenated by purging with argon for 40 min . Propanethiol was added, and the chromous salt was added in one portion. The reaction was partitioned between water and EA, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and (if needed) purified by sgc.

Debrominated Spiroketals $\mathbf{6 4 \alpha} / \mathbf{6 4 \beta}$. Bromospiroketal $71 S(50 \mathrm{mg}$, $0.053 \mathrm{mmol})$ in DMSO (2 mL , redistilled) containing propanethiol (0.50 $\mathrm{mL}, 5.3 \mathrm{mmol})$ was reduced with $\mathrm{CrCl}_{2}(27 \mathrm{mg}, 0.21 \mathrm{mmol})$ according to the general procedure to afford $\mathbf{6 4}(\beta / \alpha=7: 1$ by NMR) as a colorless oil $(80 \%, 37 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (major peaks only) $\delta 7.8-7.4(10 \mathrm{H}, \mathrm{m})$, $5.4(1 \mathrm{H}$, brt $), 5.05(1 \mathrm{H}, \mathrm{dd}), 4.7(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 4.7(1 \mathrm{H}, \mathrm{m}), 4.03$ $(1 \mathrm{H}, \mathrm{dd}), 3.13,3.01(2 \mathrm{H}, \mathrm{AB}$, two d, $J=11.1 \mathrm{~Hz}), 2.74(1 \mathrm{H}, \mathrm{q}), 2.05$ $(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.1(9 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}$, $\mathrm{d}, J=7.5 \mathrm{~Hz}), 0.83(3 \mathrm{H}, \mathrm{s}), 0.06(9 \mathrm{H}, \mathrm{s}), 2.1-0.8$ (remaining $\mathrm{H}, \mathrm{m}) ;$ ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$; major peaks only) $\delta 170.1,169.6,159.8$, $136.8^{*}, 136.5^{*}, 135.3,134.9,130.6^{*}, 119.3^{*}, 113.9,95.9,91.5^{*}, 81.5$, $75.5^{*}, 75.4^{*}, 75.4^{*}, 73.6^{*}, 70.3,58.2,50.9^{*}, 50.1^{*}, 44.1^{*}, 40.2,36.8$, $36.0,34.6,34.5^{*}, 30.1,28.6,28.1,28.0^{*}, 26.9,26.2^{*}, 21.7^{*}, 21.5^{*}$, 20.1, 17.3*, 12.0*, 9.3*, 3.4*; MS (FAB, DTT/DTE matrix) 872.5 (M, weak), 813 (M - HOAc); HRMS (FAB, DTT/DTE matrix) calcd for $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{O}_{9} \mathrm{Si}_{2}-\mathrm{HOAc}$ 813.4582, found 813.4565.

Bromotriol 78. Deprotection of the 17-OTMS of $71 S(10 \mathrm{mg}, 0.011$ mmol) was performed as for 66 except 3 equiv of TBAF at $0^{\circ} \mathrm{C}$ for 15 min sufficed; sgc afforded $78(6.1 \mathrm{mg}, 91 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $5.24(1 \mathrm{H}$, brt $), 5.09(1 \mathrm{H}$, brs $), 5.05(1 \mathrm{H}, \mathrm{dd}), 4.95(1 \mathrm{H}, \mathrm{dd}), 4.70(1 \mathrm{H}$, m), $4.5(1 \mathrm{H}$, brs $), 3.3,3.1(2 \mathrm{H}, \mathrm{AB}$, two d), $2.3(2 \mathrm{H}, \mathrm{m}), 2.1(3 \mathrm{H}, \mathrm{s})$, $1.78(3 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.2(3 \mathrm{H}, \mathrm{s}), 0.45(3 \mathrm{H}, \mathrm{s}), 2.0-$ 0.2 (remaining H, m). This compound was too unstable for further characterization.

Olefinic Triol 79. TBAF ($0.3 \mathrm{~mL}, 10$ equiv) in THF was added to a solution of $71 S(27 \mathrm{mg}, 0.028 \mathrm{mmol})$ in THF containing 4 equiv of AcOH . After 24 h , the mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EA . The organic layer was washed with saturated NaCl and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and $\operatorname{sgc}\left(20 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded 79 (14.3 $\mathrm{mg}, 85 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.54(1 \mathrm{H}$, brs $), 5.41(1 \mathrm{H}$, brt), 5.32 $(1 \mathrm{H}$, brs $), 4.65(1 \mathrm{H}, \mathrm{m}), 4.49(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{dd}), 3.40$ $(2 \mathrm{H}, \mathrm{AB}$, two d, overlap with MeOH$), 2.31(1 \mathrm{H}, \mathrm{dd}), 2.01(3 \mathrm{H}, \mathrm{s})$, $2.00(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{s}), 2.12-0.9$
(remaining H, m); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.8,172.6,160.0$, $155.4,119.8^{*}, 114.8,114.0,93.8^{*}, 89.1,83.7,80.3^{*}, 76.0^{*}, 75.2^{*}$, $70.0,56.6,52.3^{*}, 45.6^{*}, 40.6,38.0,37.1,36.4^{*}, 35.2,31.0,29.5,28.7$, 27.7, 26.4*, 21.8*, 21.5*, 19.8*, 12.5*; MS (FAB, NBA) 583 (M + Na); HRMS (FAB, NBA) calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{9}+\mathrm{Na} 583.2883$, found 583.2894.

Spiroketal Triol 82. Exhaustive desilylation of spiroketals 64 (7: $1 \beta / \alpha, 25 \mathrm{mg}, 0.029 \mathrm{mmol})$ was performed as for 66 to provide 82 (13 $\mathrm{mg}, 81 \%$), which was subjected to single-crystal X-ray analysis. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.36(1 \mathrm{H}, \mathrm{brt}), 5.15(1 \mathrm{H}, \mathrm{dd}), 4.63(1 \mathrm{H}, \mathrm{m}), 4.30$ $(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}), 3.30,3.22(2 \mathrm{H}, \mathrm{AB}$, two d, $J=$ $11.1 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{m}), 2.67(1 \mathrm{H}, \mathrm{q}), 2.17(2 \mathrm{H}, \mathrm{m}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.97$ $(3 \mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 0.87(3 \mathrm{H}$, s), 2.0-0.8 (remaining H, m); MS (FAB, DTT/DTE matrix) 585 (M +Na); HRMS (FAB, DTT/DTE matrix) calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{9}+\mathrm{Na}$ 585.3040 , found 585.3009 ; mp $196-199^{\circ} \mathrm{C}$.

TBS Ether 83. To a solution of $\mathbf{7 1 S}(170 \mathrm{mg}, 0.178 \mathrm{mmol})$ in DMF (3 mL) was added imidazole ($42 \mathrm{mg}, 0.62 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($67 \mathrm{mg}, 0.45 \mathrm{mmol}$). After 5 h , the reaction was cooled to $0^{\circ} \mathrm{C}$ and water was added followed by $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with water and dried, and sgc (10% EA/Hex) afforded 83 (180 $\mathrm{mg}, 95 \%$) as a white foam. ${ }^{1} \mathrm{H}$ NMR $\delta-0.12(\mathrm{~s}, 6 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H})$, $0.79(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.90$ $(\mathrm{s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ $(\mathrm{dd}, J=18,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=12,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.80-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.93(\mathrm{~m}$, 2 H), $0.5-2.2$ (remaining H, m); ${ }^{13} \mathrm{C}$ NMR: $\delta-5.7$ (2C), 3.3 (3C), $11.6,17.8,18.2,19.5,21.4,21.5,25.5,25.7,25.9$ (3C), 26.2, 26.4, 27.0 (3C), 27.3, 28.1, 29.3, 33.8, 34.1, 35.5, 36.8, 39.8, 44.0, 49.1, $58.4,69.3,73.4,79.8,81.5,83.4,85.6,95.6,114.5,116.6,127.3$ (2C), 127.6 (2C), 129.2, 129.6, 134.0, 135.5, 135.8 (2C), 136.2 (2C), 162.0, 169.6, 170.6; MS (FAB, NBA) 985 (M + H - HBr); HRMS (FAB, NBA) calcd for $\mathrm{C}_{56} \mathrm{H}_{85} \mathrm{O}_{9} \mathrm{Si}_{3} 985.5501$, found 985.5471 .

Alcohol 84. Selective monodeacetylation of $\mathbf{8 3}$ ($170 \mathrm{mg}, 0.159$ mmol) as per our standard protocol ${ }^{1 \mathrm{~g}}$ provided $\mathbf{8 4}(155 \mathrm{mg}, 95 \%)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR $\delta-0.12(\mathrm{~s}, 6 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.84$ $(\mathrm{s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}$, $3 \mathrm{H}), 3.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=10,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=12,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.54(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.80-7.83(\mathrm{~m}, 2 \mathrm{H})$, $7.90-7.93(\mathrm{~m}, 2 \mathrm{H}), 0.8-2.2$ (remaining $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta-5.7$ (2C) 3.3 (3C), 11.7, 17.7, 18.1, 19.4, 21.5, 25.5, 25.9 (3C), 26.1, 26.4, 27.0 (3C), 28.2, 29.4, 31.2, 34.1, 35.5, 37.0, 37.7, 39.8, 44.2, 49.2, 58.4, $69.2,70.9,73.5,79.8,81.4,83.4,85.6,95.5,114.5,116.5,127.2$ (2C), 127.6 (2C), 129.2, 129.5, 134.0, 135.5, 135.7 (2C), 136.1 (2C), 162.0, 169.7; MS (FAB, NBA) 943 ($\mathrm{M}+\mathrm{H}-\mathrm{HBr}$); HRMS (FAB, NBA) calcd for $\mathrm{C}_{54} \mathrm{H}_{83} \mathrm{O}_{8} \mathrm{Si}_{3} 943.5396$, found 943.5388 .

Ketone 85. To a solution of $\mathbf{8 4}(140 \mathrm{mg}, 0.137 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3.6$ $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added an aqueous solution of chromic acid (0.32 mL of $1.3 \mathrm{M}, 0.41 \mathrm{mmol})$. After 15 min , water and $\mathrm{Et}_{2} \mathrm{O}$ were added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried and filtered through a 1-in. pad of silica gel. Concentration gave $85(136 \mathrm{mg}, 97 \%)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR $\delta-0.12(\mathrm{~s}, 6 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.04$ $(\mathrm{s}, 9 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J$ $=10,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=12,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.79-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.92(\mathrm{~m}, 2 \mathrm{H}), 0.8-$ 2.4 (remaining H); ${ }^{13} \mathrm{C}$ NMR $\delta-5.7$ (2C), 3.8 (3C), 11.5, 18.3, 18.7, 20.0, 22.0, 26.1(3C), 26.4, 26.9, 27.5 (3C), 28.9, 29.6, 34.6, 36.2, 38.4, $38.8,40.3,44.9,46.3,49.3,58.9,69.8,73.7,79.8,80.3,82.0,83.8$, $86.0,96.1,115.1,117.5,127.8$ (2C), 128.2 (2C), 129.7, 130.1, 134.5, 136.0, 136.3 (2C), 136.7 (2C), 161.9, 170.2, 211.7; MS (FAB, NBA) $1023(\mathrm{M}+\mathrm{H})$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{54} \mathrm{H}_{81} \mathrm{BrO}_{8} \mathrm{Si}_{3}$ 1021.4501, found 1021.4640.

Ketodiol 86. To a solution of ketotrisilyl ether $\mathbf{8 5}$ ($160 \mathrm{mg}, 0.156$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(13 \mathrm{~mL})$ was added a solution of $\mathrm{H}_{2} \mathrm{SiF}_{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(2.5 \mathrm{~mL}$ of $0.063 \mathrm{M}, 0.16 \mathrm{mmol})$. (Note: Direct application of commercially available 25% aqueous $\mathrm{H}_{2} \mathrm{SiF}_{6}$ for this reaction gave
inferior results and led to decomposition of the diol product. The solution used here was prepared 8 days in advance and stored in a polypropylene bottle). The reaction was allowed to stir for 1.5 h while monitoring by ${ }^{1} \mathrm{H}$ NMR, then was quenched by addition of saturated NaHCO_{3} solution. The $\mathrm{CH}_{3} \mathrm{CN}$ was removed in vacuo and the yellow oil was dissolved in $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$. $\mathrm{The}_{\mathrm{Et}}^{2} \mathrm{O}$ layer was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. $\mathrm{Sgc}(30 \%$ to $40 \% \mathrm{EA} / \mathrm{Hex})$ afforded 121 $\mathrm{mg}(93 \%)$ of $\mathbf{8 6}$ as a white foam. ${ }^{1} \mathrm{H}$ NMR $\delta 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.06$ (s, $3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}, J$ $=12,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=12,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=11$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=11,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.53($ brs, $1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 2 \mathrm{H})$, 7.87-7.90 (m, 2H), 0.8-2.2 (remaining H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 11.5,13.2$, 19.6, 21.9, 25.3, 26.8 (3C), 27.3, 27.6, 27.8, 28.5, 28.6, 34.3, 36.5, $38.1,38.2,39.6,44.7,46.5,53.6,54.1,69.6,77.8$ (2C), 82.0, 90.2 (2C), $115.3,121.2,128.1$ (2C), 128.3 (2C), 130.3, 130.7, 132.2, 133.6, 135.9 (2C), 136.2 (2C), 154.1, 170.5, 211.4; MS (FAB, NBA) $835(\mathrm{M}+\mathrm{H})$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{BrO}_{8} \mathrm{Si} 835.3241$, found 835.3267; $[\alpha]^{24}{ }_{\mathrm{D}}+44.5^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c 20).

Ketodiol 86R. The minor diastereomer 71R ($0.320 \mathrm{~g}, 0.336 \mathrm{mmol}$, collected from several NBS mediated spiroketalizations of $\mathbf{6 2 S / 6 2 R}$) was hydrolyzed as per 84. The 3,26-diol product ($0.300 \mathrm{~g}, 0.330 \mathrm{mmol}$) was dissolved in 10% aqueous DME (7 mL) and treated with NBS ($0.117 \mathrm{~g}, 0.66 \mathrm{mmol}, 2$ equiv) for 4 h , then diluted with EtOAC, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give crude 3-keto,26$\mathrm{OH}, 17-\mathrm{OTMS}$ ether. To a solution of this silyl ether $(0.295 \mathrm{~g}, 0.325$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(49 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$, 1.2 equiv) dropwise over 2 min . After 1.5 h , the mixture was diluted with EtOAC, washed with aqueous NaHSO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. $\mathrm{Sgc}\left(50: 1\right.$ to $\left.20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}\right)$ afforded $0.250 \mathrm{~g}(90 \%)$ of $\mathbf{8 6 R}$ as offwhite solids. ${ }^{1} \mathrm{H}$ NMR $\delta 0.76(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.06$ $(\mathrm{s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}$, $J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{apt}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=11.3$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=11.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=10.7,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{brs}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 7.40-$ $7.51(\mathrm{~m}, 6 \mathrm{H}), 7.80-7.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.1$ (q), 12.8 (q), 19.1 (s), 21.4 (q), 23.6 (q), 26.3 (q, 3C), 26.9 (q), $27.3(\mathrm{t}), 28.0(\mathrm{t}), 28.1(\mathrm{t})$, $33.8(\mathrm{~d}), 35.6(\mathrm{t}), 36.0(\mathrm{~s}), 37.66(\mathrm{t}), 37.75(\mathrm{t}), 44.2(\mathrm{t}), 46.0(\mathrm{~d}), 53.1$ (d), 53.7 (s), 67.4 (t), 75.2 (s), 75.8 (d), 77.0 (d), 81.6 (s), 89.7 (d), 90.4 (s), 114.5 (s , 120.5 (d), 127.7 (d, 2C), 127.9 (d, 2C), 130.0 (d), 130.3 (d), 131.5 (s), 132.5 (s), 135.5 (d, 2C), 135.7 (d, 2C), 154.2 (s), 170.0 (s), 210.8 (s); MS (CI) 757/759 (M + H -HBr), (FAB, NBA) $835(M+H)$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{BrO}_{8} \mathrm{Si} 835.3241$, found 835.3256 .

Diol 87. Following the procedure for desilylation of 85 , diol 87 was obtained from $71 S$ in 94% yield. ${ }^{1} \mathrm{H}$ NMR $\delta 7.86(4 \mathrm{H}, \mathrm{m}), 7.73(6 \mathrm{H}$, m), $5.61(1 \mathrm{H}, \mathrm{s}), 5.52(1 \mathrm{H}, \mathrm{s}), 5.12(1 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{dd}), 4.91(1 \mathrm{H}$, dd), $4.68(1 \mathrm{H}, \mathrm{m}), 3.17(1 \mathrm{H}, \mathrm{dd}), 2.94(1 \mathrm{H}, \mathrm{br}, \mathrm{t}), 2.04(3 \mathrm{H}, \mathrm{s}), 2.02$ $(3 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.08(9 \mathrm{H}, \mathrm{s}), 0.86(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.0,170.5,154.6,136.3,135.9,133.7,132.3,130.7,130.3,128.4$, $128.1,120.9,115.4,90.3,90.2,82.1,77.9,73.6,69.7,54.2,54.1,44.7$, $39.7,36.6,36.5,34.4,34.1,32.0,28.8,28.4,27.7,26.8,25.3,23.0$, 21.9, 21.8, 19.6, 14.5, 13.3, 12.3.

26-OTBS Ether 88. Following the procedure for silylation of $\mathbf{8 3}$, $\mathbf{8 6}$ was converted to $\mathbf{8 8}$ in 96% yield. ${ }^{1} \mathrm{H}$ NMR $\delta-0.12(\mathrm{~s}, 6 \mathrm{H}), 0.79$ $(\mathrm{s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}$, $3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{dd}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=12,8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.87-5.0(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53$ (brs, 1 H$)$, $5.57(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.90(\mathrm{~m}$, 2 H), 0.8-2.2 (remaining H, m).

C20 Debrominated Diastereomers $\mathbf{8 9} \alpha / \mathbf{8 9 \beta}$. Reduction of 87 (0.11 $\mathrm{g}, 0.13 \mathrm{mmol})$ in DMSO $(2 \mathrm{~mL})$ with 1-propanethiol ($1.2 \mathrm{~mL}, 13 \mathrm{mmol}$) and $\mathrm{CrCl}_{2}(79 \mathrm{mg}, 0.64 \mathrm{mmol})$ according to the general procedure and $\operatorname{sgc}(35 \%$ to $40 \% \mathrm{EA} / \mathrm{Hex})$ afforded $90 \mathrm{mg}(87 \%)$ of the inseparable $\mathbf{8 9} \alpha / \beta$ mixture (3.6:1). ${ }^{1} \mathrm{H}$ NMR $\delta 7.80(4 \mathrm{H}, \mathrm{m}), 7.42(6 \mathrm{H}, \mathrm{s}), 5.53$ $(1 \mathrm{H}, \mathrm{s}), 5.27$ and $5.03(\mathrm{H}-12$, two dd (1:3.5)), 4.93 and $4.57(\mathrm{H}-16$, two brd (3.5:1)), 4.19 and $3.83(\mathrm{H}-23$, two dd (3.5: 1)), 3.90 and 3.68 $(1 \mathrm{H}$, two s $(3.5: 1)), 3.05(1 \mathrm{H}, \mathrm{m}), 2.93(1 \mathrm{H}, \mathrm{m}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.99$ $(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.88$ and $0.85(3 \mathrm{H}$, two s (3.5:1)).

C20 Debrominated Diastereomers $90 \alpha / \mathbf{9 0 \beta}$. Reduction of 86 (750 $\mathrm{mg}, 0.90 \mathrm{mmol})$ in DMF (9 mL) at $-25^{\circ} \mathrm{C}$ with 1-propanethiol (16 $\mathrm{mL}, 170 \mathrm{mmol})$ and $\mathrm{CrCl}_{2}(551 \mathrm{mg}, 4.49 \mathrm{mmol})$ according to the general procedure gave $90 \alpha, \beta$ ($9: 1$ ratio by NMR). Sgc as for $\mathbf{8 9}$ afforded $570 \mathrm{mg}(84 \%)$ of $90 \alpha, \beta$ (inseparable) and 100 mg (13\%) of starting material 86. 90 α : ${ }^{1} \mathrm{H}$ NMR $\delta 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.08$ (d, $J=9.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H})$, $4.20(\mathrm{dd}, J=11,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{brs}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=11,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.56(\mathrm{brs}, 1 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.74-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.81-$ $7.84(\mathrm{~m}, 2 \mathrm{H}), 0.8-2.4$ (remaining $\mathrm{H}, \mathrm{m})$; MS (FAB, NBA) $757(\mathrm{M}+$ H); HRMS (FAB, NBA) calcd for $\mathrm{C}_{45} \mathrm{H}_{61} \mathrm{O}_{8} \mathrm{Si}$ 757.4136, found $757.4080 .90 \beta:{ }^{1} \mathrm{H}$ NMR $\delta 5.28(1 \mathrm{H}, \mathrm{dd}), 4.55(1 \mathrm{H}, \mathrm{d}), 3.84(1 \mathrm{H}, \mathrm{dd})$.

C26 TBS Ethers 91 $\alpha / 91 \beta$. Ketodiols $90 \alpha, \beta(1.01 \mathrm{~g}, 1.33 \mathrm{mmol})$ were silylated with TBSCl as per $\mathbf{8 3}$ to afford, after sgc (15% to 25% EA/Hex) $1.05 \mathrm{~g}(90 \%)$ of 91α and $0.12 \mathrm{~g}(10 \%)$ of 91β as white foams. Identical products were obtained by reduction of $\mathbf{8 8}$ as per the general procedure. 91α : $R_{f}=0.35(25 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\delta-0.15(\mathrm{~s}, 3 \mathrm{H})$, $-0.14(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$, $1.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}$, $1 \mathrm{H}), 4.31(\mathrm{dd}, J=11,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94($ brs, 1 H$), 5.03(\mathrm{dd}, J=11$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{brs}, 1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 2 \mathrm{H})$, 7.83-7.87 (m, 2H), 0.8-2.4 (remaining H, m); ${ }^{13} \mathrm{C}$ NMR $\delta-5.8,-5.6$, $8.6,11.2,13.6,18.2,19.2,21.4,25.6,25.9$ (3C), 26.6 (3C), 27.4, 28.3 (2C), 33.6, 36.1, 37.5, 37.9 (2C), 44.2, 44.4, 46.1, 52.6, 53.3, 69.1, $73.9,74.5,81.8,89.2,93.2,116.4,122.3,127.6$ (2C), 127.9 (2C), 129.8, $130.1,132.6,133.6,135.5$ (2C), 135.9 (2C), 151.2, 170.2, 211.2; MS (FAB, NBA) $871(\mathrm{M}+\mathrm{H})$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{51} \mathrm{H}_{75} \mathrm{O}_{8^{-}}$ $\mathrm{Si}_{2} 871.5001$, found 871.5010; $[\alpha]^{24} \mathrm{D}+47.6^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c 0.5).

91 $\beta: R_{f}=0.30\left(25 \%\right.$ EA in Hex); ${ }^{1} \mathrm{H}$ NMR $\delta-0.14(\mathrm{~s}, 3 \mathrm{H}),-0.13$ $(\mathrm{s}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, $9 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.98$ (apparent t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=$ $12,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54($ brs, 1 H$), 7.34-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.73(\mathrm{~m}$, 4 H), $0.8-2.4$ (remaining H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 211.3,172.1,159.0,136.1$, $134.1,133.7,129.9,129.7,127.9,127.6,119.2,114.0,91.5,90.5,81.8$, $75.2,74.4,69.6,56.6,49.5,48.1,45.8,44.5,38.5,38.3,38.0,35.7$, 33.9, 29.1, 28.4, 27.4, 27.2, 26.1, 26.0, 21.9, 19.4, 18.3, 16.3, 11.2, $7.8,-5.5,-5.6 ; \mathrm{MS}(\mathrm{FAB}, \mathrm{DTT} / \mathrm{DTE}) 871(\mathrm{M}+\mathrm{H})$; HRMS (FAB, DTT/DTE) calcd for $\mathrm{C}_{51} \mathrm{H}_{75} \mathrm{O}_{8} \mathrm{Si}_{2}$ 871.5001, found 871.4992 .

C26 TBDMS Ethers 92α and 92β. Silylation of 89 and sgc as for $91 \alpha / \beta$ gave $92 \alpha(77 \%)$ and $92 \beta(20 \%) .91 \alpha: R_{f}=0.39(25 \% \mathrm{EA} /$ Hex); ${ }^{1} \mathrm{H}$ NMR $\delta 7.85(2 \mathrm{H}, \mathrm{m}), 7.73(2 \mathrm{H}, \mathrm{m}), 7.41(6 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}$, s), $5.00(1 \mathrm{H}, \mathrm{dd}, J=11.2,5.1 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{s}), 4.66(1 \mathrm{H}, \mathrm{m}), 4.28$ $(1 \mathrm{H}, \mathrm{dd}, J=10.5,7.9 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{s}), 3.02(2 \mathrm{H}, \mathrm{AB}), 2.45(1 \mathrm{H}, \mathrm{q}$, $J=7.0 \mathrm{~Hz}), 2.00(3 \mathrm{H}, \mathrm{s}), 1.97(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.09$ $(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.00(9 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{s}), 0.74(9 \mathrm{H}, \mathrm{s}),-0.15$ $(3 \mathrm{H}, \mathrm{s}),-0.16(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.6,170.2,151.6,135.9,135.5$, 133.6, 132.6, 130.1, 129.8, 127.9, 127.6, 122.0, 116.4, 93.3, 89.3, 81.8, $74.7,73.8,73.3,69.1,52.3,52.9,44.3,37.5,36.336 .0,33.7,28.6$, $28.0,27.2,26.6,25.9,25.6,21.4,19.1,18.2,13.6,11.9,8.7,-3.6$, $-5.6,-5.8 .91 \beta: R_{f}=0.32(25 \% \mathrm{EA} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.71(4 \mathrm{H}, \mathrm{m})$, $7.40(6 \mathrm{H}, \mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{br}, \mathrm{t}), 5.27(1 \mathrm{H}, \mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}), 4.69$ $(1 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{dd}, J=10.3,7.9 \mathrm{~Hz})$, $3.50(1 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.03(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.05$ $(9 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{s}), 0.78(9 \mathrm{H}, \mathrm{s}), 0.9(3 \mathrm{H}, \mathrm{d}),-0.15(3 \mathrm{H} \mathrm{s}),-0.16$ (3H, s).

Debrominated 25R Epimers 93 $\alpha / \boldsymbol{\beta}$. Reduction of bromide 86R (40 $\mathrm{mg}, 0.048 \mathrm{mmol}$) was performed as for the $25 S$ epimer 86, except the reaction was maintained at $25^{\circ} \mathrm{C}$ and required a second charge of CrCl_{2} after 2.5 h to bring the reaction to completion. Workup and sgc gave $93 \alpha / \beta$ ($33 \mathrm{mg}, 90 \% ; 5.5: 1$ ratio by NMR). ${ }^{1} \mathrm{H}$ NMR $\delta 0.76(\mathrm{~s}, 3 \mathrm{H})$, $1.02(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 2.00$ $(\mathrm{s}, 3 \mathrm{H}), 2.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{apt}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (brapt, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 (brd, $J=10 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (brd, $J=$ 11.5, Hz, 1H), 3.72 and $3.91(1: 5.5, \mathrm{~s}, 1 \mathrm{H}), 3.82$ and 4.13 (1:5.5, dd, $J=11.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ and $4.93(1: 5.5$, brs, 1 H$), 5.02$ and 5.28 (5.5:1, dd, $J=10.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{brs}, 1 \mathrm{H}), 7.28-7.51(\mathrm{~m}, 6 \mathrm{H})$,
7.68-7.81 (m, 4H), 0.8-2.4 (remaining H, m); MS (FAB, NBA) 757 $(M+H)$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{45} \mathrm{H}_{61} \mathrm{O}_{8} \mathrm{Si} 757.4136$, found 757.4095.

Pentaol 94 α. A THF (2 mL) solution of $\mathbf{9 2} \alpha(11 \mathrm{mg}, 0.018 \mathrm{mmol})$ and TBAF ($55 \mu \mathrm{~L}, 0.055 \mathrm{mmol}$) was heated at reflux for 1 h , cooled, concentrated, and redissolved in aqueous $\mathrm{MeOH}\left(2 \mathrm{~mL}, 15 \% \mathrm{H}_{2} \mathrm{O}\right)$. $\mathrm{K}_{2} \mathrm{CO}_{3}(25.6 \mathrm{mg}, 0.185 \mathrm{mmol})$ was added and the reaction mixture was heated at reflux for 1 h . The mixture was diluted with EA (20 $\mathrm{mL})$, washed with brine $(2 \times 10 \mathrm{~mL})$, and concentrated and $\mathrm{sgc}(1 \%$ $\mathrm{MeOH} / \mathrm{EA})$ afforded $8 \mathrm{mg}(90 \%)$ of pentaol $94 \alpha .{ }^{1} \mathrm{H}$ NMR (CD 3 OD$)$ $\delta 5.39(1 \mathrm{H}$, brs $), 4.74(1 \mathrm{H}$, brs $), 4.18(1 \mathrm{H}, \mathrm{dd}, J=11.0,8.0 \mathrm{~Hz}), 3.77$ $(1 \mathrm{H}, \mathrm{dd}, J=11.0,4.7 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz})$, $2.23(1 \mathrm{H}, \mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}$, $\mathrm{d}, J=7.2 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}(\mathrm{EI}) 460\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 314$ (base), (CI) $461\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right.$, base); HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{7}$ 460.2825, found 460.2835.

Pentaol 94ß. Following the same procedure for making 94α, polyol $\mathbf{9 4} \beta$ was obtained in 82% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 6.56(1 \mathrm{H}, \mathrm{s}), 6.38$ $(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{brt}), 5.96(1 \mathrm{H}, \mathrm{brs}), 5.58(1 \mathrm{H}, \mathrm{s}), 5.44$ $(1 \mathrm{H}, \mathrm{brs}), 4.59(2 \mathrm{H}, \mathrm{m}), 3.72(2 \mathrm{H}, \mathrm{m}), 3.44(1 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 2.80$ $(1 \mathrm{H}, \mathrm{dd}, J=11.5,8.0 \mathrm{~Hz}), 1.88(3 \mathrm{H}, \mathrm{s}), 1.64(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$, $1.60(3 \mathrm{H}, \mathrm{s}), 0.79(3 \mathrm{H}, \mathrm{s})$; MS (EI) $460\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 314$ (base), (CI) $461\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right.$, base); HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{7} 460.2825$, found 460.2835 .
α-Bromoketone 95. Utilizing standard protocols, ${ }^{1 g}$ ketone 91α (84 $\mathrm{mg}, 0.097 \mathrm{mmol})$ and PTAB ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$) afforded after sgc $73 \mathrm{mg}(80 \%)$ of α-bromoketone 95 and 12 mg (14\%) of starting material 91 $\alpha .{ }^{1} \mathrm{H}$ NMR $\delta 7.84(2 \mathrm{H}, \mathrm{m}), 7.73(2 \mathrm{H}, \mathrm{m}), 7.42(6 \mathrm{H}, \mathrm{m})$, $5.56(1 \mathrm{H}, \mathrm{brs}), 5.03(1 \mathrm{H}$, dd, $J=11.0,5.1 \mathrm{~Hz}), 4.93(1 \mathrm{H}$, brs $), 4.71$ $(1 \mathrm{H}, \mathrm{dd}, J=13.0,6.2 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}), 3.99(1 \mathrm{H}$, s), $3.10(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 2.97(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 2.55(1 \mathrm{H}, \mathrm{dd}, J$ $=13,6.3 \mathrm{~Hz}), 2.46-2.42(2 \mathrm{H}, \mathrm{m}), 1.99(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{s}), 1.13$ $(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.00(9 \mathrm{H}, \mathrm{s}), 0.74(9 \mathrm{H}$, s), $-0.15(3 \mathrm{H}, \mathrm{s}),-0.16(3 \mathrm{H}, \mathrm{s}), 2.2-0.8$ (remaining H's, m); ${ }^{13} \mathrm{C}$ NMR $\delta 200.5,170.2,150.6,135.9,135.5,133.6,132.6,130.2,129.8,128.0$, $127.6,122.7,116.4,93.1,89.2,81.9,74.2,73.9,69.1,53.7,53.3,52.2$, $50.9,46.9,44.2,43.6,39.2,37.5,33.1,28.1,27.8,27.4,26.6,25.9$, $25.6,21.3,19.2,18.2,13.6,11.9,8.7,-5.6,-5.8$; MS (FAB, NBA) $949(\mathrm{M}+\mathrm{H})$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{51} \mathrm{H}_{74} \mathrm{BrO}_{8} \mathrm{Si}_{2}$ 949.4106, found 949.4125; $[\alpha]^{23}{ }_{\mathrm{D}}+45^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c 1.0).
$\boldsymbol{\alpha}$-Azidoketone 5. TMGA ($17 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.8 \mathrm{~mL})$, added to a solution of bromoketone $95(26 \mathrm{mg}$, $0.027 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(2 \mathrm{~mL})$, and stirred for 6 h . The $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was removed in vacuo and the product was filtered through silica (15% EA in Hex) to afford $5(25 \mathrm{mg}, 100 \%)$ as a white film. ${ }^{1} \mathrm{H}$ NMR δ $-0.16(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$, $1.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.45$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{dd}, J=13,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=10,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93$ (brs, 1H), 5.03 (dd, $J=11,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (brs, 1H), $7.36-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.86(\mathrm{~m}, 2 \mathrm{H}), 0.8-2.4$ (remaining H, m); ${ }^{13} \mathrm{C}$ NMR: $\delta-5.8,-5.6,8.7,12.3,13.6,18.2,19.2$, 21.3, 25.6, 25.9 (3C), 26.6 (3C), 27.5, 27.9, 28.2, 33.1, 37.2, 37.5, $43.5,44.2,44.9,47.1,52.3,53.3,63.7,69.1,73.9,74.2,81.9,89.2$, 93.1, 116.4, 122.7, 127.6 (2C), 128.0 (2C), 129.8, 130.2, 132.6, 133.6, 135.5 (2C), 135.9 (2C), 150.6, 170.2, 204.5; MS (FAB, NBA) 912 (M +H); HRMS (FAB, NBA) calcd for $\mathrm{C}_{51} \mathrm{H}_{74} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}_{2} 912.5015$, found 912.4987; $[\alpha]^{22}{ }_{\mathrm{D}}+64.3^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 1\right)$.

Acknowledgment. We thank the National Institutes of Health (CA 60548) for support of this work. Special thanks are due to Jae Uk Jeong and Rao Bhandaru for valuable discussions and Patrick Crouse, Lawrence Knox, and Lei Jiang for preparation of advanced synthetic intermediates. We are grateful to Arlene Rothwell for MS data.

Supporting Information Available: NMR spectra of compounds studied (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA9817139

[^0]: (1) Cephalostatin synthesis. 13. Portions of this work have been communicated in Article 9 of this series: Jeong, J. U.; Sutton, S. C.; Kim, S.; Fuchs, P. L. J. Am. Chem. Soc. 1995, 117, 10157. For additional syntheses of cephalostatin-related pyrazines, see: (a) Pan, Y.; Merriman, R. L.; Tanzer, L. R.; Fuchs, P. L. Bioorg. Med. Chem. Lett. 1992, 2, 967. (b) Heathcock, C. H.; Smith, S. C. J. Org. Chem. 1994, 59, 6828. (c) Kramer, A.; Ullmann, U.; Winterfeldt, E. J. Chem. Soc., Perkin Trans. 1 1993, 2865. (d) Ganesan, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 611. (e) Drogemuller, M.; Jantelat, R.; Winterfelt, E. Angew. Chem., Int. Ed. Engl. 1996, 35, 1572. (f) Guo, C.; Bhandaru, S.; Fuchs, P. L.; Boyd, M. R. J. Am. Chem. Soc. 1996, 118, 10672. (g) LaCour, T. G.; Guo, C.; Bhandaru, S.; Boyd, M. R.; Fuchs, P. L. J. Am. Chem. Soc. 1998, 120, 692. (h) Drögemüller, M.; Flessner, T.; Jautelat, R.; Scholz, U.; Winterfeldt, E. Eur. J. Org. Chem. 1998, 2811.
 (2) Pettit, G. R.; Kamano, Y.; Inoue, M.; Dufresne, C.; Boyd, M. R.; Herald, C. L.; Schmidt, J. M.; Doubek, D. L.; Christie, N. D. J. Org. Chem. 1992, 57, 429.
 (3) (a) Pettit, G. R.; Xu, J.-P.; Ichihara, Y.; Williams, M. D.; Boyd, M. R. Can. J. Chem. 1994, 72, 2260. (b) Pettit, G. R.; Tan, R.; Xu, J.-p.; Ichihara, Y.; Williams, M. D.; Boyd, M. R. J. Nat. Prod. 1998, 61, 955 and references therein. (c) Fukuzawa, S.; Matsunaga, S.; Fusetani, N. Tetrahedron 1995 51, 6707 and references therein. (d) Fukuzawa, S.; Matsunaga, S.; Fusetani, N. J. Org. Chem. 1997, 62, 4484
 (4) Pettit, G. R.; Inoue, M.; Kamano, Y.; Herald, D. L.; Arm, C.; Dufresne, C.; Christie, N. D.; Schmidt, J. M.; Doubek, D. L.; Krupa, T. S. J. Am. Chem. Soc. 1988, 110, 2006.
 (5) (a) Edwards, O. E.; Purushothaman, K. K. Can. J. Chem. 1964, 42, 712. (b) Doorenbos, N. J.; Dorn, C. P. J. Pharm. Sci. 1965, 54, 1219. (c) Ohta, G.; Koshi, K. Chem. Pharm. Bull. 1968, 16, 1487. (d) Wolloch, A.; Zibiral, E. Tetrahedron 1976, 32, 1289.

[^1]: (6) Pettit, G. R.; Ichihara, Y.; Xu, J.; Boyd, M. R.; Williams, M. D. Bioorg. Med. Chem. Lett. 1994, 4, 1507.
 (7) Guo, C.; LaCour, T. G.; Fuchs, P. L. Bioorg. Med. Chem. Lett. 1999, 9, 419.
 (8) For a preliminary account of this phase of the work see: Kim, S.; Fuchs, P. L. Tetrahedron Lett. 1994, 35, 7163.
 (9) Tigogenin acetate comprises $\sim 5 \%$ of commercial 1 . We have subsequently found that reduction at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3}$ (Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454), acetylation, and recrystallization provides $\mathbf{1 2}(90 \%)$ in an operationally more convenient manner.
 (10) Ring opening of spiroketal 11 is based upon the general method of Micovic and Diatak (see: Synthesis 1990, 591) and Dauben and Fonken (Dauben, W. G.; Fonken, G. J. J. Am. Chem. Soc. 1954, 76, 4618).

[^2]: a. DIBAL $-78^{\circ} \mathrm{C}, \beta / \alpha=9: 1$; b. $\mathrm{Ac}_{2} \mathrm{O} /$ pyr, hexane recryst.;
 c. $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{pyr} \cdot \mathrm{HCl} / \Delta$; d. $\mathrm{CrO}_{3} / \mathrm{HOAc}$; e. $\mathrm{Al}_{2} \mathrm{O}_{3} /$ benzene

[^3]: (11) Templeton, J. F.; Yan, Y. Org. Prep. Proced. Int. 1992, 24, 159.
 (12) Julian, P. L.; Meyer, E. W.; Karpel, W. J.; Waller, I. R. J. Am. Chem. Soc. 1950, 72, 5145.

[^4]: (13) (a) Nicolaou, K. C.; Duggan, M. E.; Ladduwahetty, T. Tetrahedron Lett. 1984, 25, 2069. (b) Sarandeses, L. A.; Mourino, A.; Luche, J. L. J. Chem. Soc. Chem. Commun. 1991, 818.
 (14) Smith, A. B., III; Lupo, A. T., Jr.; Ohba, M.; Chen, K. J. Am. Chem. Soc. 1989, 111, 6648.
 (15) A similar example can be found in Paul Wender's total synthesis of (+)-resiniferatoxin. A hindered TMS ether survived HF treatment. Wender, P. A.; Jesudason, C. D.; Nakahira, H.; Tamura, N.; Tebbe, A. L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119, 12976.
 (16) Kishi, B. Y.; Aratani, M.; Tanino, H.; Fukuyama, T.; Goto, T. J. Chem. Soc. Chem. Commun. 1972, 64.
 (17) (a) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847. (b) For review, see: Adam, W.; Curci, R.; Edwards, J. O. Acc. Chem. Res. 1989, 22, 205.
 (18) Allen, W. S.; Bernstein, S. J. Am. Chem. Soc. 1956, 78, 1909.
 (19) (a) Sharpless, K. B.; Gao, Y. J. Am. Chem. Soc. 1988, 110, 7538. (b) Ramaswamy, S.; Prasad, K.; Repic, O. J. Org. Chem. 1992, 57, 6344. (c) Shing, T. K. M.; Tai, V. W. F. J. Chem. Soc. Chem. Commun. 1993, 995. (d) For review, see: Lohray, B. B. Synthesis 1992, 1035.

[^5]: (20) Reich, H. J.; Peake, S. L. J. Am. Chem. Soc. 1978, 100, 4888.
 (21) For additional examples of the synthetic potential of this strategy, see: (a) Macdonald, T. L.; Narasimhan, N.; Burka, L. T. J. Am. Chem. Soc. 1980, 102, 7760. (b) McCabe, P. H.; deJenga, C. I.; Stewart, A. Tetrahedron Lett. 1981, 22, 3679. (c) Zefirov, N. S.; Zhdankin, V. V.; Makhon'kova, G. V.; Dan'kov, Y. V.; Koz'min, A. S. J. Org. Chem. 1985, 50, 1872. (d) Citterio, A.; Gandolfi, M.; Giordano, C.; Castaldi, G. Tetrahedron Lett. 1985, 26, 1665. (e) Holmes, C. P.; Bartlett, P. A. J. Org. Chem. 1989, 54, 98. (f) Knapp, S.; Naughton, A. B. J.; Dhar, T. G. M. Tetrahedron Lett. 1992, 33, 1025; see also ref 19.
 (22) For an improved procedure for oxidation of iodides to iodoso intermediates with dimethyldioxirane see: Mahadevan, A.; Fuchs, P. L. J. Am. Chem. Soc. 1995, 117, 3272.

[^6]: (23) (a) Jeong, J. U.; Fuchs, P. L. J. Am. Chem. Soc. 1994, 116, 773. (b) Jeong, J. U.; Fuchs, P. L. Tetrahedron Lett. 1994, 35, 5385.
 (24) See following article: Jeong, J. U.; Guo, C.; Fuchs, P. L. J. Am. Chem. Soc. 1999, 121, 2071.
 (25) (a) Moody, C. J.; Sie, E. R. H. Tetrahedron 1992, 48, 3991. (b) Cox, G. G.; Miller, D. J.; Moody, C. J.; Sie, E. H. B. Tetrahedron 1994, 50, 3195 and references cited therin.
 (26) (a) Corbel, B.; Hernot, D.; Haelters, J.-P.; Sturtz, G. Tetrahedron Lett. 1987, 28, 6605. (b) Cossy, J.; Belotti, D.; Thellend, A.; Pete, J. P. Synthesis 1988, 720. (c) Andriamiadanarivo, R.; Pujol, B.; Chantegrel, B.; Deshayes, C.; Doutheau, A. Tetrahedron Lett. 1993, 34, 7923.
 (27) It seems possible that a bidentate ligating effect of the β-hydroxy ketone is responsible for enhancement of the Wolff reaction or its operational equivalent.

[^7]: (28) Georgian, V.; Boyer, S. K.; Edwards, B. J. Org. Chem. 1980, 45, 1686.
 (29) Bhandaru, S.; Fuchs, P. L. Tetrahedron Lett. 1995, 36, 8347.
 (30) The R_{f} value of compound $\mathbf{5 2}$ is almost the same as that of diazophosphonate 51 which was used in excess, so the mixture was used directly in the Wadsworth-Emmons reaction.
 (31) (a) Brown, H. C.; Narasimhan, S.; Choi, Y. M. J. Org. Chem. 1982, 47, 4702. (b) Brown, H. C.; Narasimhan, S. J. Org. Chem. 1982, 47, 1606.
 (32) For a preliminary account of this phase of the work, see: Kim, S.; Sutton S. C.; Fuchs, P. L. Tetrahedron Lett. 1995, 36, 2427.

[^8]: (33) X-ray structural information relating to compounds 57, 72, and $\mathbf{8 2}$ can be obtained from the Cambridge Crystallographic Data Centre.
 (34) Henry, K. J., Jr.; Grieco, P. A.; Jagoe, C. T. Tetrahedron Lett. 1992, 33, 1817.
 (35) (a) Racherla, U. S.; Liao, Y.; Brown, H. C. J. Org. Chem. 1992, 57, 6614. (b) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535. (c) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 320. (d) Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432. (e) Brown, H. C.; Jadhav, P. K.; Perumal, P. T. Tetrahedron Lett. 1984, 25, 5111. (f) Brown, H. C.; Jadhav, P. K. J. Org. Chem. 1984, 49, 4091. (g) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092.
 (36) (a) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467. (b) Keck, G. E.; Krishnamurthy, D.; Grier, M. J. Org. Chem. 1993, 58, 6543. (c) Keck, G. E.; Geraci, L. S. Tetrahedron Lett. 1993, 34, 7827. (d) Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Ronchi, A. U. J. Am. Chem. Soc. 1993, 115, 7001.

[^9]: (37) Jeong, J. U.; Fuchs, P. L. Tetrahedron Lett. 1995, 36, 2431. See also ref 24.
 (38) (a) Dodge, J. A.; Trujillo, J. I.; Presnell, M. J. Org. Chem. 1994, 59, 234. (b) Caine, D.; Kotian, P. L. J. Org. Chem. 1992, 57, 6587. (c) Hughes, D. L.; Reamer, R. A.; Bergan, J. J.; Grabowski, E. J. J. J. Am. Chem. Soc. 1988, 110, 6487.
 (39) (a) Johnson, W. S.; Chan, M. F. J. Org. Chem. 1985, 50, 2598. (b) Ichikawa, Y.; Isobe, M.; Bai, D. L.; Goto, T. Tetrahedron 1987, 43, 4737.
 (40) Corey, E. J.; Jardine, P. D.; Virgil, S.; Yuen, P. W.; Connell, R. D. J. Am. Chem. Soc. 1989, 111, 9243.
 (41) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768

[^10]: (42) Hardinger, S. A.; Wijaya, N. Tetrahedron Lett. 1993, 34, 3821.
 (43) Ireland, R. E.; Meissner, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, 115, 7166 and references therein.

[^11]: (44) (a) Konradsson, P.; Mootoo, D. R.; Mcdevitt, R. E.; Reid, B. F. J. Chem. Soc. Chem. Commun. 1990, 270. (b) Veeneman, G. H.; Van Leeuwe, S. H.; Van Boom, J. H. Tetrahedron Lett. 1990, 31, 1331. (c) Merritt, J. R.; Reid, B. F. J. Am. Chem. Soc. 1992, 114, 8334. (d) Olah, G. A.; Wang, Q.; Sandford, G.; Prakash, G. K. S. J. Org. Chem. 1993, 58, 3194.
 (45) Lemieux, R. U.; Morgan, A. R. Can. J. Chem. 1965, 43, 2190.
 (46) Beebe, T. R. J. Org. Chem. 1981, 46, 1927.

[^12]: (47) Kropp, P. Acc. Chem. Res. 1984, 17, 131.
 (48) Shibata, I.; Nakamura, K.; Baba, A.; Matsuda, H. Tetrahedron Lett. 1992, 33, 5709.
 (49) Vedejs, E.; Duncan, S. M.; Haight, A. R. J. Org. Chem. 1993, 58, 3043.
 (50) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. Synlett 1991, 435.
 (51) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. Tetrahedron Lett. 1992, 33, 5709.
 (52) Kahne, D.; Yang, D.; Lim, J. J.; Miller, R.; Paguaga, E. J. Am. Chem. Soc. 1988, 110, 8716.
 (53) (a) Kim, S.; Kim, Y.; Ahn, K. H. Tetrahedron Lett. 1983, 24, 3369. (b) Kim, S.; Ko, J. S. Synth. Commun. 1985, 15, 603.
 (54) Doyle, M. P.; Mcoster, C. C.; West, C. T. J. Org. Chem. 1976, 41, 1393.
 (55) Berkowitz, D. B. Synlett 1990, 649.

[^13]: (56) Paulvannan, K.; Stille, J. R. Tetrahedron Lett. 1993, 34, 6673
 (57) Vedejs, E.; Buchanan, R. A. J. Am. Chem. Soc. 1989, 111, 8426.
 (58) (a) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655. (b) Stork, G.; Kahne, D. E. J. Am. Chem. Soc. 1983, 105, 1072.
 (59) (a) Barton, D. H. R.; Basu, N. K.; Hesse, R. H.; Morehouse, F. S.; Pechet, M. M. J. Am. Chem. Soc. 1966, 88, 3016. (b) Barton, D. H. R.; Basu, N. K. Tetrahedron Lett. 1964, 43, 3151.
 (60) (a) Bachi, M. D.; Epstein, J. W.; Minzly, Y.; Loewenthal, H. E. J. Org. Chem. 1969, 34, 126. (b) House, H. O.; Zaiko, E. J. Org. Chem. 1977, 42, 3780. (c) Hook, J. M.; Mander, L. N.; Urech, R. J. Am. Chem. Soc. 1980, 102, 6628. (d) Hook, J. M.; Mander, L. N.; Urech, R. J. Org. Chem. 1984, 49, 3250.
 (61) (a) Hanson, J. R.; Premuzic, E. Angew. Chem., Int. Ed. Engl. 1968, 247. (b) Hanson, J. Synthesis 1974, 1.
 (62) Kochi, J. K.; Mocadlo, P. E. J. Am. Chem. Soc. 1966, 88, 4094.

[^14]: (63) Pilcher, A. S.; Hill, D. K.; Shimshock, S. J.; Waltermire, R. E.; DeShong, P. J. Org. Chem. 1992, 57, 2492.
 (64) Corey, E. J.; Ishiguro, M. Tetrahedron Lett. 1979, 79, 2745-2748.

[^15]: (65) A study of factors influencing the course of the chromium(II) mediated reduction is in progress and will be the subject of a future report.
 (66) (a) Li, C.; Arasappan, A.; Fuchs, P. L. Tetrahedron Lett. 1993, 22, 3545. (b) Li, C.; Shih, T. L.; Jeong, J. U.; Arasappan, A.; Fuchs, P. L. Tetrahedron Lett. 1994, 35, 2645.

